A hybrid cuckoo search and K-means for clustering problem

A. S. Girsang, A. Yunanto, Ayu Hidayah Aslamiah
{"title":"A hybrid cuckoo search and K-means for clustering problem","authors":"A. S. Girsang, A. Yunanto, Ayu Hidayah Aslamiah","doi":"10.1109/ICECOS.2017.8167117","DOIUrl":null,"url":null,"abstract":"Cuckoo search algorithm (CSA) is one of behavior algorithm which is effective to solve optimization problem including the clustering problem. Based on investigation, k-means is also effective to solve the clustering problem specially in fast convergence. This paper combines two algorithms, cuckoo search algorithm and k-means algorithm in clustering problem called FCSA. Cuckoo search is used to build the robust initialization, while K-means is used to accelerate by building the solutions. The result confirms that FCSA's computational time in ten datasets is faster than the compared algorithm.","PeriodicalId":6528,"journal":{"name":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"316 1","pages":"120-124"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2017.8167117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Cuckoo search algorithm (CSA) is one of behavior algorithm which is effective to solve optimization problem including the clustering problem. Based on investigation, k-means is also effective to solve the clustering problem specially in fast convergence. This paper combines two algorithms, cuckoo search algorithm and k-means algorithm in clustering problem called FCSA. Cuckoo search is used to build the robust initialization, while K-means is used to accelerate by building the solutions. The result confirms that FCSA's computational time in ten datasets is faster than the compared algorithm.
聚类问题的混合布谷鸟搜索和K-means
布谷鸟搜索算法(CSA)是一种能有效解决包括聚类问题在内的优化问题的行为算法。基于研究,k-means对于解决聚类问题也很有效,特别是在快速收敛方面。本文将布谷鸟搜索算法和k-means算法两种算法结合在聚类问题FCSA中。杜鹃搜索用于构建鲁棒初始化,K-means用于通过构建解来加速。结果证实了FCSA算法在10个数据集上的计算速度比比较算法快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信