Childhood-Onset Neurodegeneration with Cerebellar Atrophy Syndrome: Severe Neuronal Degeneration and Cardiomyopathy with Loss of Tubulin Deglutamylase Cytosolic Carboxypeptidase 1
B. Samur, Gülhan Ercan-Sencicek, H. Gumuş, G. Gumus, A. Baykan, A. Çağlayan, H. Per
{"title":"Childhood-Onset Neurodegeneration with Cerebellar Atrophy Syndrome: Severe Neuronal Degeneration and Cardiomyopathy with Loss of Tubulin Deglutamylase Cytosolic Carboxypeptidase 1","authors":"B. Samur, Gülhan Ercan-Sencicek, H. Gumuş, G. Gumus, A. Baykan, A. Çağlayan, H. Per","doi":"10.1055/s-0042-1749669","DOIUrl":null,"url":null,"abstract":"Abstract The cytoskeleton is a dynamic filamentous network with various cellular and developmental functions. The loss of cytosolic carboxypeptidase 1 (CCP1) causes neuronal death. Childhood-onset neurodegeneration with cerebellar atrophy (CONDCA, OMIM no.: 618276) is an extremely rare disease caused by ATP/GTP binding protein 1 ( AGTPBP1 ) gene-related CCP1 dysfunction of microtubules affecting the cerebellum, spinal motor neurons, and peripheral nerves. Also, possible problems are expected in tissues where the cytoskeleton plays a dynamic role, such as cardiomyocytes. In the present study, we report a novel homozygous missense (NM_015239: c.2447A > C, p. Gln816Pro) variant in the AGTPBP1 gene that c.2447A > C variant has never been reported in a homozygous state in the Genome Aggregation (gnomAD; v2.1.1) database, identified by whole-exome sequencing in a patient with a seizure, dystonia, dilated cardiomyopathy (DCM), and accompanying atrophy of caudate nuclei, putamen, and cerebellum. Unlike other cases in the literature, we expand the phenotype associated with AGTPBP1 variants to include dysmorphic features, idiopathic DCM which could be reversed with supportive treatments, seizure patterns, and radiological findings. These findings expanded the spectrum of the AGTPBP1 gene mutations and associated possible manifestations. Our study may help establish appropriate genetic counseling and prenatal diagnosis for undiagnosed neurodegenerative patients.","PeriodicalId":16729,"journal":{"name":"Journal of pediatric neurology","volume":"1 1","pages":"371 - 376"},"PeriodicalIF":0.2000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pediatric neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1749669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The cytoskeleton is a dynamic filamentous network with various cellular and developmental functions. The loss of cytosolic carboxypeptidase 1 (CCP1) causes neuronal death. Childhood-onset neurodegeneration with cerebellar atrophy (CONDCA, OMIM no.: 618276) is an extremely rare disease caused by ATP/GTP binding protein 1 ( AGTPBP1 ) gene-related CCP1 dysfunction of microtubules affecting the cerebellum, spinal motor neurons, and peripheral nerves. Also, possible problems are expected in tissues where the cytoskeleton plays a dynamic role, such as cardiomyocytes. In the present study, we report a novel homozygous missense (NM_015239: c.2447A > C, p. Gln816Pro) variant in the AGTPBP1 gene that c.2447A > C variant has never been reported in a homozygous state in the Genome Aggregation (gnomAD; v2.1.1) database, identified by whole-exome sequencing in a patient with a seizure, dystonia, dilated cardiomyopathy (DCM), and accompanying atrophy of caudate nuclei, putamen, and cerebellum. Unlike other cases in the literature, we expand the phenotype associated with AGTPBP1 variants to include dysmorphic features, idiopathic DCM which could be reversed with supportive treatments, seizure patterns, and radiological findings. These findings expanded the spectrum of the AGTPBP1 gene mutations and associated possible manifestations. Our study may help establish appropriate genetic counseling and prenatal diagnosis for undiagnosed neurodegenerative patients.
期刊介绍:
The Journal of Pediatric Neurology is a multidisciplinary peer-reviewed medical journal publishing articles in the fields of childhood neurology, pediatric neurosurgery, pediatric neuroradiology, child psychiatry and pediatric neuroscience. The Journal of Pediatric Neurology, the official journal of the Society of Pediatric Science of the Yüzüncü Yil University in Turkiye, encourages submissions from authors throughout the world. The following articles will be considered for publication: editorials, original and review articles, rapid communications, case reports, neuroimage of the month, letters to the editor and book reviews.