Ngakan Ketut Acwin Dwijendra, Wongchai Anupong, Ahmed Majed Althahabi, S. A. Abdulameer, W. Al-Azzawi, Mustafa Musa Jaber, M. M. A. Zahra, Zuhair I. Al Mashhadani
{"title":"Optimal Dispatch of the Energy Demand in Electrical Distribution Grid with Reserve Scheduling","authors":"Ngakan Ketut Acwin Dwijendra, Wongchai Anupong, Ahmed Majed Althahabi, S. A. Abdulameer, W. Al-Azzawi, Mustafa Musa Jaber, M. M. A. Zahra, Zuhair I. Al Mashhadani","doi":"10.2478/rtuect-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract The operation of the electrical systems is a major problem for electrical companies’ subject to uncertainties threatening. In this study, the optimal management of the energy demand in the electrical distribution grid is done by interval optimization approach under electrical price uncertainty. The management of the energy demand is implemented via incentive-based modelling of the demand response programs (DRPs). The incentive-based modelling as reserve, and based on bid price for reduction of the electrical demand at peak hours is proposed. The interval optimization approach is used for the minimization of the electrical price uncertainty effects. The main objective in the proposed approach is minimizing operation cost; epsilon-constraint method is utilized to solve the problem. Finally, an electrical distribution grid has been used at various case studies to numerical simulation results and positive effects of the proposed modelling under uncertainties.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"14 1","pages":"80 - 91"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The operation of the electrical systems is a major problem for electrical companies’ subject to uncertainties threatening. In this study, the optimal management of the energy demand in the electrical distribution grid is done by interval optimization approach under electrical price uncertainty. The management of the energy demand is implemented via incentive-based modelling of the demand response programs (DRPs). The incentive-based modelling as reserve, and based on bid price for reduction of the electrical demand at peak hours is proposed. The interval optimization approach is used for the minimization of the electrical price uncertainty effects. The main objective in the proposed approach is minimizing operation cost; epsilon-constraint method is utilized to solve the problem. Finally, an electrical distribution grid has been used at various case studies to numerical simulation results and positive effects of the proposed modelling under uncertainties.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.