Detecting overlapping communities in folksonomies

Abhijnan Chakraborty, Saptarshi Ghosh, Niloy Ganguly
{"title":"Detecting overlapping communities in folksonomies","authors":"Abhijnan Chakraborty, Saptarshi Ghosh, Niloy Ganguly","doi":"10.1145/2309996.2310032","DOIUrl":null,"url":null,"abstract":"Folksonomies like Delicious and LastFm are modeled as tripartite (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple topical interests and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of information contained in the original tripartite structure. We propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"137 1","pages":"213-218"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Folksonomies like Delicious and LastFm are modeled as tripartite (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple topical interests and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of information contained in the original tripartite structure. We propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.
检测大众分类法中的重叠社区
像Delicious和LastFm这样的大众分类法被建模为三方(用户-资源-标签)超图,用于研究它们的网络属性。从这样的网络中检测相似节点的社区是一个具有挑战性的问题。大多数现有的大众分类法社区检测算法为节点分配唯一的社区,而在现实中,用户有多个主题兴趣,同一资源通常被标记为语义上不同的标签。检测重叠社区的少数尝试是在超图的投影上工作的,这导致了原始三方结构中包含的信息的重大损失。我们提出了第一个使用完全超图结构来检测民俗分类中重叠社区的算法。我们的算法使用超边缘相似度度量将超图转换为相应的线形图,因此任何单部图上的社区检测算法都可以用于在大众分类法中产生重叠的社区。通过对合成和真实民俗分类法数据的大量实验,我们证明了与现有的最先进的民俗分类法算法相比,所提出的算法可以检测到更好的社区结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信