{"title":"A robust architecture for post-silicon skew tuning","authors":"Mac Y. C. Kao, Kun-Ting Tsai, Shih-Chieh Chang","doi":"10.1109/ICCAD.2011.6105417","DOIUrl":null,"url":null,"abstract":"Clock skew minimization is important in VLSI design field. Due to the presence of Process, Voltage, and Temperature (PVT) variations, the Post-Silicon Skew Tuning (PST) technique with the ability of tolerating PVT variations has brought a broad discussion. A PST architecture can dynamically minimize the clock skew even after a chip is manufactured. However, testing the variation tolerance ability of a PST architecture is very difficult because the clock skew does not directly affect the functionality of a design. In addition, creating PVT variation in the traditional testing environment is not easy. Unlike most previous works which focus on the implementation and the performance issues of a PST architecture, the objective of this paper is to propose efficient test mechanisms and verify the variation tolerance ability. In addition, we also propose a novel structure to increase the robustness of a PST architecture in case of a manufacturing fault. Our experiment shows that with little overhead, we can achieve robustness.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"40 1","pages":"774-778"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Clock skew minimization is important in VLSI design field. Due to the presence of Process, Voltage, and Temperature (PVT) variations, the Post-Silicon Skew Tuning (PST) technique with the ability of tolerating PVT variations has brought a broad discussion. A PST architecture can dynamically minimize the clock skew even after a chip is manufactured. However, testing the variation tolerance ability of a PST architecture is very difficult because the clock skew does not directly affect the functionality of a design. In addition, creating PVT variation in the traditional testing environment is not easy. Unlike most previous works which focus on the implementation and the performance issues of a PST architecture, the objective of this paper is to propose efficient test mechanisms and verify the variation tolerance ability. In addition, we also propose a novel structure to increase the robustness of a PST architecture in case of a manufacturing fault. Our experiment shows that with little overhead, we can achieve robustness.