Xiaonan Nie, Yi Liu, Fangcheng Fu, J. Xue, Dian Jiao, Xupeng Miao, Yangyu Tao, Bin Cui
{"title":"Angel-PTM: A Scalable and Economical Large-scale Pre-training System in Tencent","authors":"Xiaonan Nie, Yi Liu, Fangcheng Fu, J. Xue, Dian Jiao, Xupeng Miao, Yangyu Tao, Bin Cui","doi":"10.48550/arXiv.2303.02868","DOIUrl":null,"url":null,"abstract":"\n Recent years have witnessed the unprecedented achievements of large-scale pre-trained models, especially Transformer models. Many products and services in Tencent Inc., such as WeChat, QQ, and Tencent Advertisement, have been opted in to gain the power of pre-trained models. In this work, we present Angel-PTM, a productive deep learning system designed for pre-training and fine-tuning Transformer models. Angel-PTM can train extremely large-scale models with hierarchical memory efficiently. The key designs of Angel-PTM are a fine-grained memory management via the\n Page\n abstraction and a unified scheduling method that coordinates computations, data movements, and communications. Furthermore, Angel-PTM supports extreme model scaling with SSD storage and implements a lock-free updating mechanism to address the SSD I/O bottlenecks. Experimental results demonstrate that Angel-PTM outperforms existing systems by up to 114.8% in terms of maximum model scale as well as up to 88.9% in terms of training throughput. Additionally, experiments on GPT3-175B and T5-MoE-1.2T models utilizing hundreds of GPUs verify our strong scalability.\n","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.02868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Recent years have witnessed the unprecedented achievements of large-scale pre-trained models, especially Transformer models. Many products and services in Tencent Inc., such as WeChat, QQ, and Tencent Advertisement, have been opted in to gain the power of pre-trained models. In this work, we present Angel-PTM, a productive deep learning system designed for pre-training and fine-tuning Transformer models. Angel-PTM can train extremely large-scale models with hierarchical memory efficiently. The key designs of Angel-PTM are a fine-grained memory management via the
Page
abstraction and a unified scheduling method that coordinates computations, data movements, and communications. Furthermore, Angel-PTM supports extreme model scaling with SSD storage and implements a lock-free updating mechanism to address the SSD I/O bottlenecks. Experimental results demonstrate that Angel-PTM outperforms existing systems by up to 114.8% in terms of maximum model scale as well as up to 88.9% in terms of training throughput. Additionally, experiments on GPT3-175B and T5-MoE-1.2T models utilizing hundreds of GPUs verify our strong scalability.