Energy Allocation for Vehicle-to-Grid Settings: A Low-Cost Proposal Combining DRL and VNE

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Peiying Zhang;Ning Chen;Neeraj Kumar;Laith Abualigah;Mohsen Guizani;Youxiang Duan;Jian Wang;Sheng Wu
{"title":"Energy Allocation for Vehicle-to-Grid Settings: A Low-Cost Proposal Combining DRL and VNE","authors":"Peiying Zhang;Ning Chen;Neeraj Kumar;Laith Abualigah;Mohsen Guizani;Youxiang Duan;Jian Wang;Sheng Wu","doi":"10.1109/TSUSC.2023.3307551","DOIUrl":null,"url":null,"abstract":"As electric vehicle (EV) ownership becomes more commonplace, partly due to government incentives, there is a need also to design solutions such as energy allocation strategies to more effectively support sustainable vehicle-to-grid (V2G) applications. Therefore, this work proposes an energy allocation strategy, designed to minimize the electricity cost while improving the operating revenue. Specifically, V2G is abstracted as a three-domain network architecture to facilitate flexible, intelligent, and scalable energy allocation decision-making. Furthermore, this work combines virtual network embedding (VNE) and deep reinforcement learning (DRL) algorithms, where a DRL-based agent model is proposed, to adaptively perceives environmental features and extracts the feature matrix as input. In particular, the agent consists of a four-layer architecture for node and link embedding, and jointly optimizes the decision-making through a reward mechanism and gradient back-propagation. Finally, the effectiveness of the proposed strategy is demonstrated through simulation case studies. Specifically, compared to the used benchmarks, it improves the VNR acceptance ratio, Long-term average revenue, and Long-term average revenue-cost ratio indicators by an average of 3.17%, 191.36, and 2.04%, respectively. To the best of our knowledge, this is one of the first attempts combining VNE and DRL to provide an energy allocation strategy for V2G.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10226295/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

As electric vehicle (EV) ownership becomes more commonplace, partly due to government incentives, there is a need also to design solutions such as energy allocation strategies to more effectively support sustainable vehicle-to-grid (V2G) applications. Therefore, this work proposes an energy allocation strategy, designed to minimize the electricity cost while improving the operating revenue. Specifically, V2G is abstracted as a three-domain network architecture to facilitate flexible, intelligent, and scalable energy allocation decision-making. Furthermore, this work combines virtual network embedding (VNE) and deep reinforcement learning (DRL) algorithms, where a DRL-based agent model is proposed, to adaptively perceives environmental features and extracts the feature matrix as input. In particular, the agent consists of a four-layer architecture for node and link embedding, and jointly optimizes the decision-making through a reward mechanism and gradient back-propagation. Finally, the effectiveness of the proposed strategy is demonstrated through simulation case studies. Specifically, compared to the used benchmarks, it improves the VNR acceptance ratio, Long-term average revenue, and Long-term average revenue-cost ratio indicators by an average of 3.17%, 191.36, and 2.04%, respectively. To the best of our knowledge, this is one of the first attempts combining VNE and DRL to provide an energy allocation strategy for V2G.
车辆到电网设置的能源分配:结合 DRL 和 VNE 的低成本建议
随着电动汽车(EV)的普及(部分原因是政府的激励措施),我们也需要设计一些解决方案,如能源分配策略,以更有效地支持可持续的车对网(V2G)应用。因此,本研究提出了一种能源分配策略,旨在最大限度地降低电力成本,同时提高运营收益。具体来说,V2G 被抽象为一个三域网络架构,以促进灵活、智能和可扩展的能源分配决策。此外,这项工作还结合了虚拟网络嵌入(VNE)和深度强化学习(DRL)算法,提出了一种基于 DRL 的代理模型,用于自适应地感知环境特征并提取特征矩阵作为输入。其中,代理由四层结构组成,用于节点和链接嵌入,并通过奖励机制和梯度反向传播共同优化决策。最后,通过模拟案例研究证明了所提策略的有效性。具体来说,与所使用的基准相比,它在 VNR 接收率、长期平均收入和长期平均收入成本比指标上分别平均提高了 3.17%、191.36 和 2.04%。据我们所知,这是结合 VNE 和 DRL 为 V2G 提供能源分配策略的首次尝试之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信