Symmetric Contrastive Loss for Out-of-Distribution Skin Lesion Detection

Xuan Li, Christian Desrosiers, Xue Liu
{"title":"Symmetric Contrastive Loss for Out-of-Distribution Skin Lesion Detection","authors":"Xuan Li, Christian Desrosiers, Xue Liu","doi":"10.1109/ISBI52829.2022.9761434","DOIUrl":null,"url":null,"abstract":"Detecting out-of-distribution (OOD) data has been a challenging task for deep learning models trained with real-life datasets. This work studies OOD detection in medical images where inter-class difference (e.g., variations in visual appearance across separate diseases) outweighs intra-class difference (e.g., same disease but on different locations or people). To improve OOD detection performance, we propose a self-supervised learning approach that can better capture inter-/intra-class variance using a novel symmetric contrastive loss. Two large-scale, publicly-available skin lesion datasets, HAM10000 and DermNet, are adopted in our study. Comprehensive experiments, including three different distributional shifts, disease-specific OOD detection, as well as an adversarial attack, are conducted to validate the effectiveness of our approach.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Detecting out-of-distribution (OOD) data has been a challenging task for deep learning models trained with real-life datasets. This work studies OOD detection in medical images where inter-class difference (e.g., variations in visual appearance across separate diseases) outweighs intra-class difference (e.g., same disease but on different locations or people). To improve OOD detection performance, we propose a self-supervised learning approach that can better capture inter-/intra-class variance using a novel symmetric contrastive loss. Two large-scale, publicly-available skin lesion datasets, HAM10000 and DermNet, are adopted in our study. Comprehensive experiments, including three different distributional shifts, disease-specific OOD detection, as well as an adversarial attack, are conducted to validate the effectiveness of our approach.
非分布皮肤病变检测的对称对比损失
对于使用真实数据集训练的深度学习模型来说,检测偏离分布(OOD)数据一直是一项具有挑战性的任务。这项工作研究了医学图像中的OOD检测,其中类间差异(例如,不同疾病之间的视觉外观变化)大于类内差异(例如,相同的疾病,但在不同的位置或人身上)。为了提高OOD检测性能,我们提出了一种自监督学习方法,该方法可以使用一种新的对称对比损失来更好地捕获类间/类内方差。我们的研究采用了两个大规模的、公开的皮肤病变数据集HAM10000和DermNet。综合实验,包括三种不同的分布移位,疾病特异性OOD检测,以及对抗性攻击,进行了验证我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信