Extending a search-based test generator with adaptive dynamic symbolic execution

Juan P. Galeotti, G. Fraser, Andrea Arcuri
{"title":"Extending a search-based test generator with adaptive dynamic symbolic execution","authors":"Juan P. Galeotti, G. Fraser, Andrea Arcuri","doi":"10.1145/2610384.2628049","DOIUrl":null,"url":null,"abstract":"Automatic unit test generation aims to support developers by alleviating the burden of test writing. Different techniques have been proposed over the years, each with distinct limitations. To overcome these limitations, we present an extension to the EvoSuite unit test generator that combines two of the most popular techniques for test case generation: Search-Based Software Testing (SBST) and Dynamic Symbolic Execution (DSE). A novel integration of DSE as a step of local improvement in a genetic algorithm results in an adaptive approach, such that the best test generation technique for the problem at hand is favoured, resulting in overall higher code coverage.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"1 1","pages":"421-424"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2610384.2628049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Automatic unit test generation aims to support developers by alleviating the burden of test writing. Different techniques have been proposed over the years, each with distinct limitations. To overcome these limitations, we present an extension to the EvoSuite unit test generator that combines two of the most popular techniques for test case generation: Search-Based Software Testing (SBST) and Dynamic Symbolic Execution (DSE). A novel integration of DSE as a step of local improvement in a genetic algorithm results in an adaptive approach, such that the best test generation technique for the problem at hand is favoured, resulting in overall higher code coverage.
用自适应动态符号执行扩展基于搜索的测试生成器
自动单元测试生成旨在通过减轻测试编写的负担来支持开发人员。多年来,人们提出了不同的技术,每种技术都有不同的局限性。为了克服这些限制,我们提出了EvoSuite单元测试生成器的扩展,它结合了两种最流行的测试用例生成技术:基于搜索的软件测试(SBST)和动态符号执行(DSE)。作为遗传算法局部改进步骤的DSE的新颖集成产生了一种自适应方法,这样对手头问题的最佳测试生成技术就会得到青睐,从而导致总体上更高的代码覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信