Segmentation of gastroenterology images: A comparison between clustering and fitting models approaches

F. Riaz, P. Pimentel-Nunes, M. Dinis-Ribeiro, M. Coimbra
{"title":"Segmentation of gastroenterology images: A comparison between clustering and fitting models approaches","authors":"F. Riaz, P. Pimentel-Nunes, M. Dinis-Ribeiro, M. Coimbra","doi":"10.1109/CBMS.2013.6627872","DOIUrl":null,"url":null,"abstract":"Segmentation is a vital step for pattern recognition systems used in in-body imaging scenarios. In this paper we compare the performance of three popular segmentation algorithms (mean shift, normalized cuts, level-sets) when applied to two distinct in-body imaging scenarios: chromoen-doscopy and narrow-band imaging. Observation shows that the model-based algorithm did not perform well, when compared to its segmentation by clustering alternatives. Normalized cuts obtained the best performance although future work hints that texture similarity should be further explored in order to increase segmentation performance in this type of scenarios.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":"88 1","pages":"550-551"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Segmentation is a vital step for pattern recognition systems used in in-body imaging scenarios. In this paper we compare the performance of three popular segmentation algorithms (mean shift, normalized cuts, level-sets) when applied to two distinct in-body imaging scenarios: chromoen-doscopy and narrow-band imaging. Observation shows that the model-based algorithm did not perform well, when compared to its segmentation by clustering alternatives. Normalized cuts obtained the best performance although future work hints that texture similarity should be further explored in order to increase segmentation performance in this type of scenarios.
胃肠病学图像分割:聚类和拟合模型方法的比较
分割是用于人体成像场景的模式识别系统的关键步骤。在本文中,我们比较了三种流行的分割算法(均值移位,归一化切割,水平集)在两种不同的体内成像场景下的性能:彩色内镜和窄带成像。观察表明,与聚类分割相比,基于模型的分割算法表现不佳。归一化切割获得了最好的性能,尽管未来的工作表明,为了提高这类场景下的分割性能,纹理相似性需要进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信