Gordian complexes of knots and virtual knots given by region crossing changes and arc shift moves

A. Gill, M. Prabhakar, Andrei Vesnin
{"title":"Gordian complexes of knots and virtual knots given by region crossing changes and arc shift moves","authors":"A. Gill, M. Prabhakar, Andrei Vesnin","doi":"10.1142/s0218216520420080","DOIUrl":null,"url":null,"abstract":"Gordian complex of knots was defined by Hirasawa and Uchida as the simplicial complex whose vertices are knot isotopy classes in $\\mathbb{S}^3$. Later Horiuchi and Ohyama defined Gordian complex of virtual knots using $v$-move and forbidden moves. In this paper we discuss Gordian complex of knots by region crossing change and Gordian complex of virtual knots by arc shift move. Arc shift move is a local move in the virtual knot diagram which results in reversing orientation locally between two consecutive crossings. We show the existence of an arbitrarily high dimensional simplex in both the Gordian complexes, i.e., by region crossing change and by the arc shift move. For any given knot (respectively, virtual knot) diagram we construct an infinite family of knots (respectively, virtual knots) such that any two distinct members of the family have distance one by region crossing change (respectively, arc shift move). We show that that the constructed virtual knots have the same affine index polynomial.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218216520420080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Gordian complex of knots was defined by Hirasawa and Uchida as the simplicial complex whose vertices are knot isotopy classes in $\mathbb{S}^3$. Later Horiuchi and Ohyama defined Gordian complex of virtual knots using $v$-move and forbidden moves. In this paper we discuss Gordian complex of knots by region crossing change and Gordian complex of virtual knots by arc shift move. Arc shift move is a local move in the virtual knot diagram which results in reversing orientation locally between two consecutive crossings. We show the existence of an arbitrarily high dimensional simplex in both the Gordian complexes, i.e., by region crossing change and by the arc shift move. For any given knot (respectively, virtual knot) diagram we construct an infinite family of knots (respectively, virtual knots) such that any two distinct members of the family have distance one by region crossing change (respectively, arc shift move). We show that that the constructed virtual knots have the same affine index polynomial.
由区域交叉变化和弧移运动给出的结和虚结的高氏复合体
结的Gordian复合体被Hirasawa和Uchida定义为顶点为$\mathbb{S}^3$中的结同位素类的简单复合体。后来Horiuchi和Ohyama使用$v$-move和forbidden move定义了虚结的Gordian复合体。本文讨论了通过区域交叉变换得到的结点的Gordian复形和通过弧移移动得到的虚结点的Gordian复形。弧移移动是虚拟结图中的一种局部移动,其结果是在两个连续的交叉点之间局部反转方向。我们证明了任意高维单纯形的存在,即通过区域交叉变化和通过弧移移动。对于任何给定的结(分别为虚拟结)图,我们构造一个无限的结族(分别为虚拟结),使得该族的任何两个不同成员的距离为1,通过区域交叉变化(分别为弧移移动)。我们证明了所构造的虚结具有相同的仿射指数多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信