Two proofs of the algebraic completeness theorem for multilattice logic

Q1 Arts and Humanities
Oleg M. Grigoriev, Y. Petrukhin
{"title":"Two proofs of the algebraic completeness theorem for multilattice logic","authors":"Oleg M. Grigoriev, Y. Petrukhin","doi":"10.1080/11663081.2019.1647654","DOIUrl":null,"url":null,"abstract":"Abstract Shramko [(2016). Truth, falsehood, information and beyond: The American plan generalized. In K. Bimbo (Ed.), J. Michael Dunn on information based logics, outstanding contributions to logic (pp. 191–212). Dordrecht: Springer] formulated multilattice logic and the algebraic completeness theorem for it. However, the proof has not been presented. In this paper, we consider Kamide and Shramko's multilattice logic [Kamide & Shramko (2017a). Embedding from multilattice logic into classical logic and vice versa. Journal of Logic and Computation, 27(5), 1549–1575] which is an extension of Shramko's original multilattice logic by several implications and coimplications. Using the technique of algebraic embedding, we show that Kamide and Shramko's sequent calculus for multilattice logic is sound and complete with respect to multilattices. Moreover, we introduce yet another algebraic semantics for this logic based on the notion of a De Morgan multilattice. Using Lindenbaum-Tarski algebras, we show that is sound and complete with respect to De Morgan multilattices. Besides, we modify Kamide and Shramko's notion of modal multilattice [Kamide & Shramko (2017b). Modal multilattice logic. Logica Universalis, 11(3), 317–343], i.e. we present the concept of De Morgan modal multilattice. We prove that Kamide and Shramko's modal multilattice logic (Kamide & Shramko, 2017b) is adequate with respect to De Morgan modal multilattices.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"70 1","pages":"358 - 381"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2019.1647654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Shramko [(2016). Truth, falsehood, information and beyond: The American plan generalized. In K. Bimbo (Ed.), J. Michael Dunn on information based logics, outstanding contributions to logic (pp. 191–212). Dordrecht: Springer] formulated multilattice logic and the algebraic completeness theorem for it. However, the proof has not been presented. In this paper, we consider Kamide and Shramko's multilattice logic [Kamide & Shramko (2017a). Embedding from multilattice logic into classical logic and vice versa. Journal of Logic and Computation, 27(5), 1549–1575] which is an extension of Shramko's original multilattice logic by several implications and coimplications. Using the technique of algebraic embedding, we show that Kamide and Shramko's sequent calculus for multilattice logic is sound and complete with respect to multilattices. Moreover, we introduce yet another algebraic semantics for this logic based on the notion of a De Morgan multilattice. Using Lindenbaum-Tarski algebras, we show that is sound and complete with respect to De Morgan multilattices. Besides, we modify Kamide and Shramko's notion of modal multilattice [Kamide & Shramko (2017b). Modal multilattice logic. Logica Universalis, 11(3), 317–343], i.e. we present the concept of De Morgan modal multilattice. We prove that Kamide and Shramko's modal multilattice logic (Kamide & Shramko, 2017b) is adequate with respect to De Morgan modal multilattices.
多格逻辑代数完备性定理的两个证明
[摘要]Shramko[2016]。真相、谎言、信息及其他:美国计划的概括性。在K. Bimbo(编),J. Michael Dunn对基于信息的逻辑,对逻辑的杰出贡献(第191-212页)。Dordrecht: Springer]公式化的多格逻辑及其代数完备性定理。然而,证据还没有提出。在本文中,我们考虑Kamide和Shramko的多点阵逻辑[Kamide & Shramko (2017a)]。从多格逻辑嵌入到经典逻辑,反之亦然。[j] .逻辑与计算学报,27(5),1549-1575],这是对Shramko原始多格逻辑的扩展,通过一些隐含和协隐含。利用代数嵌入技术,我们证明了Kamide和Shramko的多格逻辑序演算对于多格来说是健全和完备的。此外,我们还引入了另一种基于De Morgan多重格概念的代数语义。利用Lindenbaum-Tarski代数,我们证明了关于De Morgan多格,它是健全完备的。此外,我们修改了Kamide和Shramko的模态多晶格概念[Kamide & Shramko (2017b)]。模态多格逻辑。逻辑普遍,11(3),317-343],即我们提出了De Morgan模态多格的概念。我们证明了Kamide和Shramko的模态多格逻辑(Kamide和Shramko, 2017b)对于De Morgan模态多格是充分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信