On the rate of convergence in the strong law of large numbers for martingales

Pub Date : 2015-03-04 DOI:10.1080/17442508.2014.938075
Y. Miao, Guangyu Yang, G. Stoica
{"title":"On the rate of convergence in the strong law of large numbers for martingales","authors":"Y. Miao, Guangyu Yang, G. Stoica","doi":"10.1080/17442508.2014.938075","DOIUrl":null,"url":null,"abstract":"The aim of this note is to establish the Baum–Katz type rate of convergence in the Marcinkiewicz–Zygmund strong law of large numbers for martingales, which improves the recent works of Stoica [Series of moderate deviation probabilities for martingales, J. Math. Anal. Appl. 336 (2005), pp. 759–763; Baum–Katz–Nagaev type results for martingales, J. Math. Anal. Appl. 336 (2007), pp. 1489–1492; A note on the rate of convergence in the strong law of large numbers for martingales, J. Math. Anal. Appl. 381 (2011), pp. 910–913]. Furthermore, we also study some relevant limit behaviours for the uniform mixing process. Under some uniform mixing conditions, the sufficient and necessary condition of the convergence of the martingale series is established.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.938075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The aim of this note is to establish the Baum–Katz type rate of convergence in the Marcinkiewicz–Zygmund strong law of large numbers for martingales, which improves the recent works of Stoica [Series of moderate deviation probabilities for martingales, J. Math. Anal. Appl. 336 (2005), pp. 759–763; Baum–Katz–Nagaev type results for martingales, J. Math. Anal. Appl. 336 (2007), pp. 1489–1492; A note on the rate of convergence in the strong law of large numbers for martingales, J. Math. Anal. Appl. 381 (2011), pp. 910–913]. Furthermore, we also study some relevant limit behaviours for the uniform mixing process. Under some uniform mixing conditions, the sufficient and necessary condition of the convergence of the martingale series is established.
分享
查看原文
关于鞅强大数定律的收敛速度
本文的目的是建立鞅的Marcinkiewicz-Zygmund强数定律中的Baum-Katz型收敛速率,它改进了Stoica[鞅的中等偏差概率系列,J. Math]的最新工作。分析的苹果336(2005),第759-763页;鞅的Baum-Katz-Nagaev型结果,数学。分析的苹果336 (2007),pp. 1489-1492;关于鞅强大数定律收敛速度的注解[j]。分析的应用学报,381 (2011),pp. 910-913]。此外,我们还研究了均匀混合过程的一些相关极限行为。在一些均匀混合条件下,建立了鞅级数收敛的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信