{"title":"Reconstructing the channel shifting pattern of the Torsa River on the Himalayan Foreland Basin over the last 250 years","authors":"U. Saha, Soma Bhattacharya","doi":"10.2478/bgeo-2019-0007","DOIUrl":null,"url":null,"abstract":"Abstract The varied physiography, incidences of high seasonal discharge, influences of neo-tectonic activity and the young geological foundation with less consolidated cohesive and non-cohesive sediment have left the Himalayan foreland basin a formidable ground, where silt-laden rivers tend to migrate frequently. A set of maps prepared after 1764, space photographs captured in 1970 and current satellite images from 2015 and 2017 were studied to reconstruct the fluvial dynamics of the Torsa River on the foreland basin of Sikkim-Bhutan Himalaya considering a time span of nearly 250 years. Evidence collected from colonial literature, the above-mentioned satellite images and a field survey, were combined to verify results taken from the old maps used as the base of the study. The application of satellite remote sensing and analysis of the topographic signatures of the palaeo-courses in the form of the palaeo-levee, abandoned courses and ox-bow lakes were the major operational attributes in this study. As a consequence of the channel migration of Torsa River since 1764, the historical floodplain of Torsa has been topographically marked by beheaded old distributaries, a misfit channel system and the presence of abandoned segments. Morphometric changes in the old courses, major flood events and neo-tectonic activity guided an overall trend of channel migration eastwards and has led to a couple of channel oscillation events in the Torsa River over the last 250 years. The mechanism of the avulsion events was thoroughly driven by sedimentation-induced channel morphometric changes and occasional high discharge.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bgeo-2019-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract The varied physiography, incidences of high seasonal discharge, influences of neo-tectonic activity and the young geological foundation with less consolidated cohesive and non-cohesive sediment have left the Himalayan foreland basin a formidable ground, where silt-laden rivers tend to migrate frequently. A set of maps prepared after 1764, space photographs captured in 1970 and current satellite images from 2015 and 2017 were studied to reconstruct the fluvial dynamics of the Torsa River on the foreland basin of Sikkim-Bhutan Himalaya considering a time span of nearly 250 years. Evidence collected from colonial literature, the above-mentioned satellite images and a field survey, were combined to verify results taken from the old maps used as the base of the study. The application of satellite remote sensing and analysis of the topographic signatures of the palaeo-courses in the form of the palaeo-levee, abandoned courses and ox-bow lakes were the major operational attributes in this study. As a consequence of the channel migration of Torsa River since 1764, the historical floodplain of Torsa has been topographically marked by beheaded old distributaries, a misfit channel system and the presence of abandoned segments. Morphometric changes in the old courses, major flood events and neo-tectonic activity guided an overall trend of channel migration eastwards and has led to a couple of channel oscillation events in the Torsa River over the last 250 years. The mechanism of the avulsion events was thoroughly driven by sedimentation-induced channel morphometric changes and occasional high discharge.