Acoustic wave propagation: 2D Wigner and 3D wavefront simulations

J. Salo, K. Bjorknas, J. Fagerholm, A. Friberg, M.M. Salmaa
{"title":"Acoustic wave propagation: 2D Wigner and 3D wavefront simulations","authors":"J. Salo, K. Bjorknas, J. Fagerholm, A. Friberg, M.M. Salmaa","doi":"10.1109/ULTSYM.1997.662998","DOIUrl":null,"url":null,"abstract":"Recently, we have applied an angular-spectrum based method, the thin-element decomposition (TED), to calculate SAW propagation in waveguide structures. However, the angular spectrum does not allow for reflections in the waveguide, which leads to discrepancies for long strips. This has lead us to use the Wigner-distribution function to describe the propagation of SAW in the paraxial limit. This approach leads to a ray-tracing type algorithm which is fast and easy to implement. We calculate wave propagation in a waveguide and compare the results to those given by the classical guided mode theory. We also discus the behaviour of Wigner distribution functions near sharp boundaries. We have also simulated expanding acoustic wavefronts produced by a point disturbance in a bulk. Due to elastic anisotropy of the solid, the energy flux associated with a plane wave is not collinear with the wave vector and, correspondingly, wave fronts (which correspond to the group-velocity surfaces) are not spherical.","PeriodicalId":6369,"journal":{"name":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","volume":"58-60 1","pages":"147-151 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1997.662998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, we have applied an angular-spectrum based method, the thin-element decomposition (TED), to calculate SAW propagation in waveguide structures. However, the angular spectrum does not allow for reflections in the waveguide, which leads to discrepancies for long strips. This has lead us to use the Wigner-distribution function to describe the propagation of SAW in the paraxial limit. This approach leads to a ray-tracing type algorithm which is fast and easy to implement. We calculate wave propagation in a waveguide and compare the results to those given by the classical guided mode theory. We also discus the behaviour of Wigner distribution functions near sharp boundaries. We have also simulated expanding acoustic wavefronts produced by a point disturbance in a bulk. Due to elastic anisotropy of the solid, the energy flux associated with a plane wave is not collinear with the wave vector and, correspondingly, wave fronts (which correspond to the group-velocity surfaces) are not spherical.
声波传播:二维维格纳和三维波前模拟
最近,我们应用了一种基于角谱的方法——薄单元分解(TED)来计算声SAW在波导结构中的传播。然而,角度光谱不允许在波导中反射,这导致了长条带的差异。这导致我们使用维格纳分布函数来描述声表面波在近轴极限的传播。这种方法导致了一种快速且易于实现的光线跟踪类型算法。我们计算了波在波导中的传播,并将结果与经典导模理论的结果进行了比较。我们还讨论了维格纳分布函数在锐边界附近的行为。我们还模拟了由块体中的点扰动产生的扩展声波前。由于固体的弹性各向异性,与平面波相关的能量通量与波矢量不共线,相应地,波前(对应于群速度面)不是球形的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信