On particle Gibbs sampling

N. Chopin, Sumeetpal S. Singh
{"title":"On particle Gibbs sampling","authors":"N. Chopin, Sumeetpal S. Singh","doi":"10.3150/14-BEJ629","DOIUrl":null,"url":null,"abstract":"The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm to sample from the full posterior distribution of a state-space model. It does so by executing Gibbs sampling steps on an extended target distribution defined on the space of the auxiliary variables generated by an interacting particle system. This paper makes the following contributions to the theoretical study of this algorithm. Firstly, we present a coupling construction between two particle Gibbs updates from different starting points and we show that the coupling probability may be made arbitrarily close to one by increasing the number of particles. We obtain as a direct corollary that the particle Gibbs kernel is uniformly ergodic. Secondly, we show how the inclusion of an additional Gibbs sampling step that reselects the ancestors of the particle Gibbs' extended target distribution, which is a popular approach in practice to improve mixing, does indeed yield a theoretically more efficient algorithm as measured by the asymptotic variance. Thirdly, we extend particle Gibbs to work with lower variance resampling schemes. A detailed numerical study is provided to demonstrate the efficiency of particle Gibbs and the proposed variants.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3150/14-BEJ629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

Abstract

The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm to sample from the full posterior distribution of a state-space model. It does so by executing Gibbs sampling steps on an extended target distribution defined on the space of the auxiliary variables generated by an interacting particle system. This paper makes the following contributions to the theoretical study of this algorithm. Firstly, we present a coupling construction between two particle Gibbs updates from different starting points and we show that the coupling probability may be made arbitrarily close to one by increasing the number of particles. We obtain as a direct corollary that the particle Gibbs kernel is uniformly ergodic. Secondly, we show how the inclusion of an additional Gibbs sampling step that reselects the ancestors of the particle Gibbs' extended target distribution, which is a popular approach in practice to improve mixing, does indeed yield a theoretically more efficient algorithm as measured by the asymptotic variance. Thirdly, we extend particle Gibbs to work with lower variance resampling schemes. A detailed numerical study is provided to demonstrate the efficiency of particle Gibbs and the proposed variants.
关于粒子吉布斯采样
粒子Gibbs采样器是一种从状态空间模型的全后验分布中采样的马尔可夫链蒙特卡罗(MCMC)算法。它通过在相互作用粒子系统产生的辅助变量空间上定义的扩展目标分布上执行吉布斯采样步骤来实现。本文对该算法的理论研究做出了以下贡献:首先,我们提出了不同起点的两个粒子吉布斯更新之间的耦合结构,并证明了通过增加粒子数量可以使耦合概率任意接近于1。作为直接推论,我们得到粒子吉布斯核是均匀遍历的。其次,我们展示了如何包含一个额外的吉布斯采样步骤,重新选择粒子吉布斯扩展目标分布的祖先,这是一种在实践中改善混合的流行方法,确实产生了理论上更有效的算法,通过渐近方差来衡量。第三,我们扩展了粒子Gibbs,使其适用于低方差重采样方案。详细的数值研究证明了粒子吉布斯及其变体的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信