Monitoring machine learning models: a categorization of challenges and methods

Tim Schröder, Michael Schulz
{"title":"Monitoring machine learning models: a categorization of challenges and methods","authors":"Tim Schröder,&nbsp;Michael Schulz","doi":"10.1016/j.dsm.2022.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring was analyzed as a possible solution to mitigate those challenges. Capturing relevant data and model metrics may reveal problems at an early stage, allowing for targeted countermeasures. This study presents a taxonomy of methods and metrics currently addressed in scientific literature and compares these categories with case studies from practice.</p></div>","PeriodicalId":100353,"journal":{"name":"Data Science and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666764922000303/pdfft?md5=55f9a032588179192732a092b760d946&pid=1-s2.0-S2666764922000303-main.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666764922000303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring was analyzed as a possible solution to mitigate those challenges. Capturing relevant data and model metrics may reveal problems at an early stage, allowing for targeted countermeasures. This study presents a taxonomy of methods and metrics currently addressed in scientific literature and compares these categories with case studies from practice.

监测机器学习模型:挑战和方法的分类
基于机器学习的软件的重要性正在迅速增长,但原型的潜力可能无法在操作中实现。本研究确定了生产过程中机器学习应用验证和验证的六类挑战。随后,分析了监测作为缓解这些挑战的可能解决方案。捕获相关数据和模型度量可以在早期阶段揭示问题,从而允许有针对性的对策。本研究提出了目前在科学文献中解决的方法和指标的分类,并将这些类别与实践中的案例研究进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信