Natural Antioxidant and Antimicrobial Agents and Processing Technologies for the Design of Active Food Packaging Polymers

IF 11.1 2区 化学 Q1 POLYMER SCIENCE
B. P. Chang, Binh M. Trinh, Debela T. Tadele, N. Bandara, T. Mekonnen
{"title":"Natural Antioxidant and Antimicrobial Agents and Processing Technologies for the Design of Active Food Packaging Polymers","authors":"B. P. Chang, Binh M. Trinh, Debela T. Tadele, N. Bandara, T. Mekonnen","doi":"10.1080/15583724.2023.2234464","DOIUrl":null,"url":null,"abstract":"Abstract Over the last decades, food packaging has advanced significantly, which is crucial in maintaining food safety and minimizing waste. However, most traditional food packaging materials in the market are typically made of inexpensive synthetic plastics with a limited scope of providing physical containment and an effective barrier against moisture and gases. In contrast, sustainable active packaging offers a promising solution to extend the shelf-life of food by effectively decreasing the rate of oxidative deterioration and microbial growth while reducing the environmental impact of petrochemical-derived plastics. As a result, there is a significant interest in developing sustainable and active food packaging materials with a low carbon footprint. Natural resource-derived antioxidant and antimicrobial agents are better alternatives to traditional synthetic agents when combined with any biodegradable polymer as it enhances the sustainability portfolio. This review critically evaluates recent trends in developing natural resource-derived antioxidant and antimicrobial agents for active food packaging applications. Various active biobased antioxidant and antimicrobial agents are critically reviewed and discussed, including their structure, physico-chemical properties, and various attributes in food packaging applications. Finally, this review presents an outlook on the future of sustainable and active food packaging materials and highlights the potential challenges in their development and implementation.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"43 1","pages":"961 - 1013"},"PeriodicalIF":11.1000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15583724.2023.2234464","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Over the last decades, food packaging has advanced significantly, which is crucial in maintaining food safety and minimizing waste. However, most traditional food packaging materials in the market are typically made of inexpensive synthetic plastics with a limited scope of providing physical containment and an effective barrier against moisture and gases. In contrast, sustainable active packaging offers a promising solution to extend the shelf-life of food by effectively decreasing the rate of oxidative deterioration and microbial growth while reducing the environmental impact of petrochemical-derived plastics. As a result, there is a significant interest in developing sustainable and active food packaging materials with a low carbon footprint. Natural resource-derived antioxidant and antimicrobial agents are better alternatives to traditional synthetic agents when combined with any biodegradable polymer as it enhances the sustainability portfolio. This review critically evaluates recent trends in developing natural resource-derived antioxidant and antimicrobial agents for active food packaging applications. Various active biobased antioxidant and antimicrobial agents are critically reviewed and discussed, including their structure, physico-chemical properties, and various attributes in food packaging applications. Finally, this review presents an outlook on the future of sustainable and active food packaging materials and highlights the potential challenges in their development and implementation.
天然抗氧化和抗菌剂及活性食品包装聚合物设计的加工技术
摘要在过去的几十年里,食品包装有了显著的进步,这对于保持食品安全和减少浪费至关重要。然而,市场上大多数传统的食品包装材料通常由廉价的合成塑料制成,其提供物理密封和有效防潮和防气体屏障的范围有限。相比之下,可持续活性包装提供了一个很有前途的解决方案,通过有效地降低氧化变质和微生物生长的速度,同时减少石化衍生塑料对环境的影响,延长食品的保质期。因此,人们对开发具有低碳足迹的可持续和活性食品包装材料非常感兴趣。天然资源衍生的抗氧化剂和抗菌剂与任何可生物降解聚合物结合使用时,是传统合成剂的更好替代品,因为它增强了可持续性组合。这篇综述批判性地评估了用于活性食品包装应用的天然资源衍生抗氧化剂和抗菌剂的最新发展趋势。对各种活性生物基抗氧化剂和抗菌剂进行了综述和讨论,包括它们的结构、理化性质以及在食品包装应用中的各种属性。最后,本文对可持续和活性食品包装材料的未来进行了展望,并强调了其开发和实施中的潜在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Reviews
Polymer Reviews 工程技术-高分子科学
CiteScore
24.80
自引率
0.80%
发文量
21
审稿时长
6 months
期刊介绍: Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers. The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信