{"title":"An Intrusion Detection and Identification System for Internet of Things Networks Using a Hybrid Ensemble Deep Learning Framework","authors":"Yanika Kongsorot;Pakarat Musikawan;Phet Aimtongkham;Ilsun You;Abderrahim Benslimane;Chakchai So-In","doi":"10.1109/TSUSC.2023.3303422","DOIUrl":null,"url":null,"abstract":"Owing to the exponential proliferation of internet services and the sophistication of intrusions, traditional intrusion detection algorithms are unable to handle complex invasions due to their limited representation capabilities and the unbalanced nature of Internet of Things (IoT)-related data in terms of both telemetry and network traffic. Drawing inspiration from deep learning achievements in feature extraction and representation learning, in this study, we propose an accurate hybrid ensemble deep learning framework (HEDLF) to protect against obfuscated cyber-attacks on IoT networks. To address complex features and alleviate the imbalance problem, the proposed HEDLF includes three key components: 1) a hierarchical feature representation technique based on deep learning, which aims to extract specific information by supervising the loss of gradient information; 2) a balanced rotated feature extractor that simultaneously encourages the individual accuracy and diversity of the ensemble classifier; and 3) a meta-classifier acting as an aggregation method, which leverages a semisparse group regularizer to analyze the base classifiers’ outputs. Additionally, these improvements take class imbalance into account. The experimental results show that when compared against state-of-the-art techniques in terms of accuracy, precision, recall, and F1-score, the proposed HEDLF can achieve promising results on both telemetry and network traffic data.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"8 4","pages":"596-613"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10214045/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the exponential proliferation of internet services and the sophistication of intrusions, traditional intrusion detection algorithms are unable to handle complex invasions due to their limited representation capabilities and the unbalanced nature of Internet of Things (IoT)-related data in terms of both telemetry and network traffic. Drawing inspiration from deep learning achievements in feature extraction and representation learning, in this study, we propose an accurate hybrid ensemble deep learning framework (HEDLF) to protect against obfuscated cyber-attacks on IoT networks. To address complex features and alleviate the imbalance problem, the proposed HEDLF includes three key components: 1) a hierarchical feature representation technique based on deep learning, which aims to extract specific information by supervising the loss of gradient information; 2) a balanced rotated feature extractor that simultaneously encourages the individual accuracy and diversity of the ensemble classifier; and 3) a meta-classifier acting as an aggregation method, which leverages a semisparse group regularizer to analyze the base classifiers’ outputs. Additionally, these improvements take class imbalance into account. The experimental results show that when compared against state-of-the-art techniques in terms of accuracy, precision, recall, and F1-score, the proposed HEDLF can achieve promising results on both telemetry and network traffic data.