Self-Supervised Logic Induction for Explainable Fuzzy Temporal Commonsense Reasoning

Bibo Cai, Xiao Ding, Zhouhao Sun, Bing Qin, Ting Liu, Baojun Wang, Lifeng Shang
{"title":"Self-Supervised Logic Induction for Explainable Fuzzy Temporal Commonsense Reasoning","authors":"Bibo Cai, Xiao Ding, Zhouhao Sun, Bing Qin, Ting Liu, Baojun Wang, Lifeng Shang","doi":"10.1609/aaai.v37i11.26481","DOIUrl":null,"url":null,"abstract":"Understanding temporal commonsense concepts, such as times of occurrence and durations is crucial for event-centric language understanding. Reasoning about such temporal concepts in a complex context requires reasoning over both the stated context and the world knowledge that underlines it. A recent study shows massive pre-trained LM still struggle with such temporal reasoning under complex contexts (e.g., dialog) because they only implicitly encode the relevant contexts and fail to explicitly uncover the underlying logical compositions for complex inference, thus may not be robust enough. In this work, we propose to augment LMs with the temporal logic induction ability, which frames the temporal reasoning by defining three modular components: temporal dependency inducer and temporal concept defuzzifier and logic validator. The former two components disentangle the explicit/implicit dependency between temporal concepts across context (before, after, ...) and the specific meaning of fuzzy temporal concepts, respectively, while the validator combines the intermediate reasoning clues for robust contextual reasoning about the temporal concepts. Extensive experimental results on TIMEDIAL, a challenging dataset for temporal reasoning over dialog, show that our method, Logic Induction Enhanced Contextualized TEmporal Reasoning (LECTER), can yield great improvements over the traditional language model for temporal reasoning.","PeriodicalId":74506,"journal":{"name":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","volume":"1 1","pages":"12580-12588"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v37i11.26481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Understanding temporal commonsense concepts, such as times of occurrence and durations is crucial for event-centric language understanding. Reasoning about such temporal concepts in a complex context requires reasoning over both the stated context and the world knowledge that underlines it. A recent study shows massive pre-trained LM still struggle with such temporal reasoning under complex contexts (e.g., dialog) because they only implicitly encode the relevant contexts and fail to explicitly uncover the underlying logical compositions for complex inference, thus may not be robust enough. In this work, we propose to augment LMs with the temporal logic induction ability, which frames the temporal reasoning by defining three modular components: temporal dependency inducer and temporal concept defuzzifier and logic validator. The former two components disentangle the explicit/implicit dependency between temporal concepts across context (before, after, ...) and the specific meaning of fuzzy temporal concepts, respectively, while the validator combines the intermediate reasoning clues for robust contextual reasoning about the temporal concepts. Extensive experimental results on TIMEDIAL, a challenging dataset for temporal reasoning over dialog, show that our method, Logic Induction Enhanced Contextualized TEmporal Reasoning (LECTER), can yield great improvements over the traditional language model for temporal reasoning.
可解释模糊时间常识推理的自监督逻辑归纳
理解时间常识性概念,如发生时间和持续时间,对于以事件为中心的语言理解至关重要。在一个复杂的背景下对这种时间概念进行推理,需要对所陈述的背景和强调它的世界知识进行推理。最近的一项研究表明,大量预训练的LM仍然在复杂上下文(例如对话)下进行这种时间推理,因为它们只是隐式地对相关上下文进行编码,而不能显式地揭示复杂推理的底层逻辑组合,因此可能不够健壮。在这项工作中,我们提出用时间逻辑归纳能力来增强LMs,该能力通过定义三个模块组件来构建时间推理:时间依赖诱导器、时间概念解模糊器和逻辑验证器。前两个组件分别解开跨上下文(before, after,…)的时间概念之间的显式/隐式依赖关系和模糊时间概念的特定含义,而验证器则结合中间推理线索,对时间概念进行鲁棒上下文推理。大量的实验结果表明,我们的方法,逻辑归纳增强上下文时态推理(LECTER),可以比传统的语言模型在时间推理方面产生很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信