An Augmented Lagrangian Neural Network for the Fixed-Time Solution of Linear Programming

Dayanna T. Toro, J. M. Lozano, J. Sánchez‐Torres
{"title":"An Augmented Lagrangian Neural Network for the Fixed-Time Solution of Linear Programming","authors":"Dayanna T. Toro, J. M. Lozano, J. Sánchez‐Torres","doi":"10.1109/ICEEE.2018.8533988","DOIUrl":null,"url":null,"abstract":"In this paper, a recurrent neural network is proposed using the augmented Lagrangian method for solving linear programming problems. The design of this neural network is based on the Karush-Kuhn-Tucker (KKT) optimality conditions and on a function that guarantees fixed-time convergence. With this aim, the use of slack variables allows transforming the initial linear programming problem into an equivalent one which only contains equality constraints. Posteriorly, the activation functions of the neural network are designed as fixed time controllers to meet KKT optimality conditions. Simulations results in an academic example and an application example show the effectiveness of the neural network.","PeriodicalId":6924,"journal":{"name":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"22 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2018.8533988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a recurrent neural network is proposed using the augmented Lagrangian method for solving linear programming problems. The design of this neural network is based on the Karush-Kuhn-Tucker (KKT) optimality conditions and on a function that guarantees fixed-time convergence. With this aim, the use of slack variables allows transforming the initial linear programming problem into an equivalent one which only contains equality constraints. Posteriorly, the activation functions of the neural network are designed as fixed time controllers to meet KKT optimality conditions. Simulations results in an academic example and an application example show the effectiveness of the neural network.
线性规划定时解的增广拉格朗日神经网络
本文利用增广拉格朗日方法提出了一种递归神经网络,用于求解线性规划问题。该神经网络的设计基于Karush-Kuhn-Tucker (KKT)最优性条件和保证固定时间收敛的函数。为此,松弛变量的使用允许将初始线性规划问题转化为只包含等式约束的等价问题。然后,将神经网络的激活函数设计为满足KKT最优条件的固定时间控制器。理论算例和应用算例的仿真结果表明了该神经网络的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信