Md Shehan Habib, Paroma Arefin, Md. Abdus Salam, K. Ahmed, M. Uddin, T. Hossain, N. Papri, Tauhidul Islam
{"title":"Proton Exchange Membrane Fuel Cell (PEMFC) Durability Factors, Challenges, and Future Perspectives: A Detailed Review","authors":"Md Shehan Habib, Paroma Arefin, Md. Abdus Salam, K. Ahmed, M. Uddin, T. Hossain, N. Papri, Tauhidul Islam","doi":"10.13005/msri/180209","DOIUrl":null,"url":null,"abstract":"Hydrogen fuel cell technology is now being researched extensively globally to provide a stable renewable energy source in the future. New research is aiding in improving performance, endurance, cost-efficiency, and the elimination of fuel cell limitations. Throughout the development process, the many aspects impacting the features, efficiency, durability, and cost of a fuel cell must be examined in a specific method. This review study looked at the impact of several variables on hydrogen fuel cell durability (HFC). In every sphere of fuel cell application, long-term operation is a must to make this electrochemical cell work. The major durability-enhancing aspects of a fuel cell include temperature, catalytic decay, contaminants, thermal energy and water maintenance, and fuel cell component design.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/msri/180209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Hydrogen fuel cell technology is now being researched extensively globally to provide a stable renewable energy source in the future. New research is aiding in improving performance, endurance, cost-efficiency, and the elimination of fuel cell limitations. Throughout the development process, the many aspects impacting the features, efficiency, durability, and cost of a fuel cell must be examined in a specific method. This review study looked at the impact of several variables on hydrogen fuel cell durability (HFC). In every sphere of fuel cell application, long-term operation is a must to make this electrochemical cell work. The major durability-enhancing aspects of a fuel cell include temperature, catalytic decay, contaminants, thermal energy and water maintenance, and fuel cell component design.