"Monotonicity with respect to p of the best constants associated with Sobolev immersions of type $W_0^{1,p}(\Omega)\hookrightarrow L^q(\Omega)$ when $q\in\{1,p,\infty\}$"
{"title":"\"Monotonicity with respect to p of the best constants associated with Sobolev immersions of type $W_0^{1,p}(\\Omega)\\hookrightarrow L^q(\\Omega)$ when $q\\in\\{1,p,\\infty\\}$\"","authors":"M. Mihăilescu, Denisa Stancu-Dumitru","doi":"10.24193/subbmath.2023.1.08","DOIUrl":null,"url":null,"abstract":"\"The goal of this paper is to collect some known results on the monotonicity with respect to $p$ of the best constants associated with Sobolev immersions of type $W_0^{1,p}(\\Omega)\\hookrightarrow L^q(\\Omega)$ when $q\\in\\{1,p,\\infty\\}$. More precisely, letting $$\\lambda(p,q;\\Omega):=\\inf\\limits_{u\\in W_0^{1,p}(\\Omega) \\setminus\\{0\\}}{\\|\\;|\\nabla u|_D\\;\\|_{L^p(\\Omega)}}{\\|u\\|_{L^q(\\Omega)}^{-1}}\\,,$$ we recall some monotonicity results related with the following functions \\begin{eqnarray*} (1,\\infty)\\ni p&\\mapsto &|\\Omega|^{p-1}\\lambda(p,1;\\Omega)^p\\,,\\\\ (1,\\infty)\\ni p&\\mapsto &\\lambda(p,p;\\Omega)^p\\,,\\\\ (D,\\infty)\\ni p&\\mapsto &\\lambda(p,\\infty;\\Omega)^p\\,, \\end{eqnarray*} when $\\Omega\\subset \\mathbb{R}^{D}$ is a given open, bounded and convex set with smooth boundary.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.1.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
"The goal of this paper is to collect some known results on the monotonicity with respect to $p$ of the best constants associated with Sobolev immersions of type $W_0^{1,p}(\Omega)\hookrightarrow L^q(\Omega)$ when $q\in\{1,p,\infty\}$. More precisely, letting $$\lambda(p,q;\Omega):=\inf\limits_{u\in W_0^{1,p}(\Omega) \setminus\{0\}}{\|\;|\nabla u|_D\;\|_{L^p(\Omega)}}{\|u\|_{L^q(\Omega)}^{-1}}\,,$$ we recall some monotonicity results related with the following functions \begin{eqnarray*} (1,\infty)\ni p&\mapsto &|\Omega|^{p-1}\lambda(p,1;\Omega)^p\,,\\ (1,\infty)\ni p&\mapsto &\lambda(p,p;\Omega)^p\,,\\ (D,\infty)\ni p&\mapsto &\lambda(p,\infty;\Omega)^p\,, \end{eqnarray*} when $\Omega\subset \mathbb{R}^{D}$ is a given open, bounded and convex set with smooth boundary."