On $L_1$-biharmonic timelike hypersurfaces in pseudo-Euclidean space $E_1^4$

IF 0.7 Q2 MATHEMATICS
F. Pashaie
{"title":"On $L_1$-biharmonic timelike hypersurfaces in pseudo-Euclidean space $E_1^4$","authors":"F. Pashaie","doi":"10.5556/j.tkjm.51.2020.3188","DOIUrl":null,"url":null,"abstract":"A well-known conjecture of Bang Yen-Chen says that the only biharmonic Euclidean submanifolds are minimal ones. In this paper, we consider an extended condition (namely, $L_1$-biharmonicity) on non-degenerate timelike hypersurfaces of the pseudo-Euclidean space $E_1^4$. A Lorentzian hypersurface $x: M_1^3\\rightarrow\\E_1^4$ is called $L_1$-biharmonic if it satisfies the condition $L_1^2x=0$, where $L_1$ is the linearized operator associated to the first variation of 2-th mean curvature vector field on $M_1^3$. According to the multiplicities of principal curvatures, the $L_1$-extension of Chen's conjecture is affirmed for Lorentzian hypersurfaces with constant ordinary mean curvature in pseudo-Euclidean space $E_1^4$. Additionally, we show that there is no proper $L_1$-biharmonic $L_1$-finite type connected orientable Lorentzian hypersurface in $E_1^4$.","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":"28 1","pages":"313-332"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.51.2020.3188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A well-known conjecture of Bang Yen-Chen says that the only biharmonic Euclidean submanifolds are minimal ones. In this paper, we consider an extended condition (namely, $L_1$-biharmonicity) on non-degenerate timelike hypersurfaces of the pseudo-Euclidean space $E_1^4$. A Lorentzian hypersurface $x: M_1^3\rightarrow\E_1^4$ is called $L_1$-biharmonic if it satisfies the condition $L_1^2x=0$, where $L_1$ is the linearized operator associated to the first variation of 2-th mean curvature vector field on $M_1^3$. According to the multiplicities of principal curvatures, the $L_1$-extension of Chen's conjecture is affirmed for Lorentzian hypersurfaces with constant ordinary mean curvature in pseudo-Euclidean space $E_1^4$. Additionally, we show that there is no proper $L_1$-biharmonic $L_1$-finite type connected orientable Lorentzian hypersurface in $E_1^4$.
伪欧几里得空间中的L_1 -双调和类时超曲面
Bang yan - chen的一个著名猜想是:双调和欧氏子流形是最小流形。本文研究了伪欧几里德空间E_1^4$上的非退化类时超曲面上的一个扩展条件(即$L_1$-双谐性)。如果满足条件$L_1^2x=0$,则称为$L_1$-双调和,其中$L_1$是与$M_1^3$上的第2平均曲率向量场的第一次变分相关的线性化算子。根据主曲率的多重性,在伪欧几里德空间E_1^4$中,对具有常平均曲率的洛伦兹超曲面,证实了Chen猜想的L_1 -推广。此外,我们还证明了$E_1^4$中不存在固有的$L_1$-双调和$L_1$-有限型连通可定向洛伦兹超曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信