Gasim Ibrahim , Mohamed S. Challiwala , Hanif A. Choudhury , Guiyan Zang , Mahmoud M. El-Halwagi , Nimir O. Elbashir
{"title":"CO2Fix: An approach to assess CO2 fixation potential of CCU reaction pathways","authors":"Gasim Ibrahim , Mohamed S. Challiwala , Hanif A. Choudhury , Guiyan Zang , Mahmoud M. El-Halwagi , Nimir O. Elbashir","doi":"10.1016/j.compchemeng.2023.108398","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we present a simple, yet powerful, metric for estimating the potential of a CCU reaction pathway to fix CO<sub>2</sub>. The CO2Fix metric is determined by using a model that accounts for various process variables and parameters that influence the ability of the reaction to convert CO<sub>2</sub> in addition to its propensity to produce CO<sub>2</sub> through the energy requirements of the process. The CO2Fix metric in this work accounts only for the direct CO<sub>2</sub> emissions and indirect CO<sub>2</sub> emissions related to the reaction portion of a CCU process. We demonstrate the use of the model to estimate the CO2Fix in two case studies representing common CCU reactions: dry reforming of methane (DRM) and CO<sub>2</sub> hydrogenation to methanol. When using natural gas-powered energy, and under the same process assumptions, the CO2Fix was estimated to be 1.1 and 3.9 for the DRM and CO<sub>2</sub> hydrogenation reactions respectively.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"178 ","pages":"Article 108398"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135423002685/pdfft?md5=006b8565680af50c4413b3434b178ed0&pid=1-s2.0-S0098135423002685-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423002685","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we present a simple, yet powerful, metric for estimating the potential of a CCU reaction pathway to fix CO2. The CO2Fix metric is determined by using a model that accounts for various process variables and parameters that influence the ability of the reaction to convert CO2 in addition to its propensity to produce CO2 through the energy requirements of the process. The CO2Fix metric in this work accounts only for the direct CO2 emissions and indirect CO2 emissions related to the reaction portion of a CCU process. We demonstrate the use of the model to estimate the CO2Fix in two case studies representing common CCU reactions: dry reforming of methane (DRM) and CO2 hydrogenation to methanol. When using natural gas-powered energy, and under the same process assumptions, the CO2Fix was estimated to be 1.1 and 3.9 for the DRM and CO2 hydrogenation reactions respectively.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.