{"title":"Dual band interleaved base station phased array antenna with optimized cross-dipole and EBG/AMC structure","authors":"F. Hyjazie, P. Watson, H. Boutayeb","doi":"10.1109/APS.2014.6905105","DOIUrl":null,"url":null,"abstract":"In this work, a new base station antenna is proposed. Two separate frequency bands with separate radiating elements are used in each band. The frequency band separation ratio is about 1.3:1. These elements are arranged with different spacing (wider spacing for the lower frequency band, and narrower spacing for the higher frequency band). Isolation between bands inherently exists in this approach. This avoids the grating lobe effect, and mitigates the beam narrowing (dispersion) seen with fixed element spacing covering the whole wide bandwidth. A new low-profile cross dipole is designed, which is integrated in the array with an EBG/AMC structure for reducing the size of low band elements and decreasing coupling at high band.","PeriodicalId":6663,"journal":{"name":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","volume":"265 1","pages":"1558-1559"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2014.6905105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this work, a new base station antenna is proposed. Two separate frequency bands with separate radiating elements are used in each band. The frequency band separation ratio is about 1.3:1. These elements are arranged with different spacing (wider spacing for the lower frequency band, and narrower spacing for the higher frequency band). Isolation between bands inherently exists in this approach. This avoids the grating lobe effect, and mitigates the beam narrowing (dispersion) seen with fixed element spacing covering the whole wide bandwidth. A new low-profile cross dipole is designed, which is integrated in the array with an EBG/AMC structure for reducing the size of low band elements and decreasing coupling at high band.