A new family of skewed distributions with application to some daily closing prices

IF 0.9 Q3 MATHEMATICS, APPLIED
Hassan S. Bakouch, Hugo S. Salinas, Naushad Mamode Khan, Christophe Chesneau
{"title":"A new family of skewed distributions with application to some daily closing prices","authors":"Hassan S. Bakouch,&nbsp;Hugo S. Salinas,&nbsp;Naushad Mamode Khan,&nbsp;Christophe Chesneau","doi":"10.1002/cmm4.1154","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce a new general family of skewed distributions obtained through the use of a weighted skewed technique. This technique has the feature to unify two classical skewness techniques. Also, it is based on a clear stochastic representation involving a tuning weight function. General moments results are given. Subsequently, we focus our attention on a special case called <i>asymmetric bimodal normal distribution</i>. We investigate the maximum likelihood estimation of the parameters for this new distribution, with a complete numerical study. The developed model and method of inference are applied to some daily closing prices of some popular stocks.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1154","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we introduce a new general family of skewed distributions obtained through the use of a weighted skewed technique. This technique has the feature to unify two classical skewness techniques. Also, it is based on a clear stochastic representation involving a tuning weight function. General moments results are given. Subsequently, we focus our attention on a special case called asymmetric bimodal normal distribution. We investigate the maximum likelihood estimation of the parameters for this new distribution, with a complete numerical study. The developed model and method of inference are applied to some daily closing prices of some popular stocks.

一个新的歪斜分布家族,应用于一些每日收盘价
本文介绍了利用加权偏态技术得到的一类新的广义偏态分布。该技术具有将两种经典偏度技术统一起来的特点。此外,它是基于一个明确的随机表示涉及一个调整权函数。给出了一般矩的结果。随后,我们将注意力集中在非对称双峰正态分布的特殊情况上。我们研究了这种新分布的参数的极大似然估计,并进行了完整的数值研究。将所建立的模型和推理方法应用于一些热门股票的日收盘价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信