{"title":"arXiv : Future Trends in Linacs","authors":"A. Degiovanni","doi":"10.23730/CYRSP-2017-001.151","DOIUrl":null,"url":null,"abstract":"High-frequency hadron-therapy linacs have been studied for the last 20 years and are now being built for dedicated proton-therapy centres. The main reason for using high-frequency linacs, in spite of the small apertures and low-duty cycle, is the fact that, for such applications, beam currents of the order of a few nA and energies of about 200 MeV are sufficient. One of the main advantages of linacs, pulsing at 200–400Hz, is that the output energy can be continuously varied, pulse-by-pulse, and a moving tumour target can be covered about ten times in 2–3 minutes by deposing the dose in many thousands of ‘spots’. Starting from the first proposal and the on-going projects related to linacs for medical applications, a discussion of the trend of this field is presented focussing, in particular, on the main challenges for the future, such as the reduction of the footprint of compact ‘single-room’ proton machines and the power efficiency of dual proton and carbon-ion ‘multi-room’ facilities.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"16 1","pages":"151-164"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23730/CYRSP-2017-001.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
High-frequency hadron-therapy linacs have been studied for the last 20 years and are now being built for dedicated proton-therapy centres. The main reason for using high-frequency linacs, in spite of the small apertures and low-duty cycle, is the fact that, for such applications, beam currents of the order of a few nA and energies of about 200 MeV are sufficient. One of the main advantages of linacs, pulsing at 200–400Hz, is that the output energy can be continuously varied, pulse-by-pulse, and a moving tumour target can be covered about ten times in 2–3 minutes by deposing the dose in many thousands of ‘spots’. Starting from the first proposal and the on-going projects related to linacs for medical applications, a discussion of the trend of this field is presented focussing, in particular, on the main challenges for the future, such as the reduction of the footprint of compact ‘single-room’ proton machines and the power efficiency of dual proton and carbon-ion ‘multi-room’ facilities.