Application of artificial intelligence in the determination of impact parameter in heavy-ion collisions at intermediate energies

Fupeng Li, Yongjia Wang, Hongliang Lü, Pengcheng Li, Qingfeng Li, Fanxin Liu
{"title":"Application of artificial intelligence in the determination of impact parameter in heavy-ion collisions at intermediate energies","authors":"Fupeng Li, Yongjia Wang, Hongliang Lü, Pengcheng Li, Qingfeng Li, Fanxin Liu","doi":"10.1088/1361-6471/abb1f9","DOIUrl":null,"url":null,"abstract":"The impact parameter is one of the crucial physical quantities of heavy-ion collisions (HICs), and can affect obviously many observables at the final state, such as the multifragmentation and the collective flow. Usually, it cannot be measured directly in experiments but might be inferred from observables at the final state. Artificial intelligence has had great success in learning complex representations of data, which enables novel modeling and data processing approaches in physical sciences. In this article, we employ two of commonly used algorithms in the field of artificial intelligence, the Convolutional Neural Networks (CNN) and Light Gradient Boosting Machine (LightGBM), to improve the accuracy of determining impact parameter by analyzing the proton spectra in transverse momentum and rapidity on the event-by-event basis. Au+Au collisions with the impact parameter of 0$\\leq$$b$$\\leq$10 fm at intermediate energies ($E_{\\rm lab}$=$0.2$-$1.0$ GeV$/$nucleon) are simulated with the ultrarelativistic quantum molecular dynamics (UrQMD) model to generate the proton spectra data. It is found that the average difference between the true impact parameter and the estimated one can be smaller than 0.1 fm. The LightGBM algorithm shows an improved performance with respect to the CNN on the task in this work. By using the LightGBM's visualization algorithm, one can obtain the important feature map of the distribution of transverse momentum and rapidity, which may be helpful in inferring the impact parameter or centrality in heavy-ion experiments.","PeriodicalId":16770,"journal":{"name":"Journal of Physics G","volume":"21 1","pages":"115104"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/abb1f9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The impact parameter is one of the crucial physical quantities of heavy-ion collisions (HICs), and can affect obviously many observables at the final state, such as the multifragmentation and the collective flow. Usually, it cannot be measured directly in experiments but might be inferred from observables at the final state. Artificial intelligence has had great success in learning complex representations of data, which enables novel modeling and data processing approaches in physical sciences. In this article, we employ two of commonly used algorithms in the field of artificial intelligence, the Convolutional Neural Networks (CNN) and Light Gradient Boosting Machine (LightGBM), to improve the accuracy of determining impact parameter by analyzing the proton spectra in transverse momentum and rapidity on the event-by-event basis. Au+Au collisions with the impact parameter of 0$\leq$$b$$\leq$10 fm at intermediate energies ($E_{\rm lab}$=$0.2$-$1.0$ GeV$/$nucleon) are simulated with the ultrarelativistic quantum molecular dynamics (UrQMD) model to generate the proton spectra data. It is found that the average difference between the true impact parameter and the estimated one can be smaller than 0.1 fm. The LightGBM algorithm shows an improved performance with respect to the CNN on the task in this work. By using the LightGBM's visualization algorithm, one can obtain the important feature map of the distribution of transverse momentum and rapidity, which may be helpful in inferring the impact parameter or centrality in heavy-ion experiments.
人工智能在确定中能量重离子碰撞参数中的应用
碰撞参数是重离子碰撞的关键物理量之一,它对最终态的许多观测值,如多重破碎和集体流都有明显的影响。通常,它不能在实验中直接测量,但可以从最终状态的可观测值中推断出来。人工智能在学习复杂数据表示方面取得了巨大成功,这使得物理科学中的新型建模和数据处理方法成为可能。本文采用卷积神经网络(Convolutional Neural Networks, CNN)和光梯度增强机(Light Gradient Boosting Machine, LightGBM)这两种人工智能领域的常用算法,通过逐次分析质子在横向动量和速度上的谱,提高确定撞击参数的准确性。用超相对论量子分子动力学(UrQMD)模型模拟了中间能量($E_{\rm lab}$ = $0.2$ - $1.0$ GeV $/$)冲击参数为0 $\leq$$b$$\leq$ 10 fm的Au+Au碰撞,得到了质子光谱数据。结果表明,实际碰撞参数与预估参数的平均差值可小于0.1 fm。在这项工作中,LightGBM算法相对于CNN在任务上表现出了更好的性能。利用LightGBM的可视化算法,可以获得横向动量和速度分布的重要特征图,有助于重离子实验中碰撞参数或中心性的推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信