System for monitoring natural disasters using natural language processing in the social network Twitter

Miguel Maldonado, D. Alulema, D. Morocho, Marida Proano
{"title":"System for monitoring natural disasters using natural language processing in the social network Twitter","authors":"Miguel Maldonado, D. Alulema, D. Morocho, Marida Proano","doi":"10.1109/CCST.2016.7815686","DOIUrl":null,"url":null,"abstract":"This paper presents the design and implementation of an automated system that allows monitoring the social network Twitter, making a connection to the API, to filter content according to four categories (volcanic, telluric, fires and climatological) which affect Ecuador because of its geographical location, taking into account that these cannot be easily predicted, and stores all tweets in a database for analysis. The filtering process is performed by using the NLTK tool with which the frequency of a word is determined within a tweet, to be classified later in one of the proposed categories. The results for each category are displayed on a web page that contains real-time statistics of the database. This work provides access to information on natural disasters because they are classified.","PeriodicalId":6510,"journal":{"name":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"15 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2016.7815686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents the design and implementation of an automated system that allows monitoring the social network Twitter, making a connection to the API, to filter content according to four categories (volcanic, telluric, fires and climatological) which affect Ecuador because of its geographical location, taking into account that these cannot be easily predicted, and stores all tweets in a database for analysis. The filtering process is performed by using the NLTK tool with which the frequency of a word is determined within a tweet, to be classified later in one of the proposed categories. The results for each category are displayed on a web page that contains real-time statistics of the database. This work provides access to information on natural disasters because they are classified.
在社交网络Twitter中使用自然语言处理来监测自然灾害的系统
本文介绍了一个自动化系统的设计和实现,该系统可以监控社交网络Twitter,连接到API,根据四个类别(火山,大地,火灾和气候)过滤内容,这些类别影响厄瓜多尔的地理位置,考虑到这些不容易预测,并将所有推文存储在数据库中进行分析。过滤过程是通过使用NLTK工具来执行的,该工具可以在tweet中确定单词的频率,然后将其分类到提议的类别之一中。每个类别的结果显示在包含数据库实时统计信息的网页上。这项工作提供了获取自然灾害信息的途径,因为这些信息是保密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信