Spectral analysis of photonic crystals made of thin rods

Asymptot. Anal. Pub Date : 2017-01-18 DOI:10.3233/ASY-181478
M. Holzmann, V. Lotoreichik
{"title":"Spectral analysis of photonic crystals made of thin rods","authors":"M. Holzmann, V. Lotoreichik","doi":"10.3233/ASY-181478","DOIUrl":null,"url":null,"abstract":"In this paper we address the question how to design photonic crystals that have photonic band gaps around a finite number of given frequencies. In such materials electromagnetic waves with these frequencies can not propagate; this makes them interesting for a large number of applications. We focus on crystals made of periodically ordered thin rods with high contrast dielectric properties. We show that the material parameters can be chosen in such a way that transverse magnetic modes with given frequencies can not propagate in the crystal. At the same time, for any frequency belonging to a predefined range there exists a transverse electric mode that can propagate in the medium. These results are related to the spectral properties of a weighted Laplacian and of an elliptic operator of divergence type both acting in $L^2(\\mathbb{R}^2)$. The proofs rely on perturbation theory of linear operators, Floquet-Bloch analysis, and properties of Schroedinger operators with point interactions.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"260 1","pages":"83-112"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we address the question how to design photonic crystals that have photonic band gaps around a finite number of given frequencies. In such materials electromagnetic waves with these frequencies can not propagate; this makes them interesting for a large number of applications. We focus on crystals made of periodically ordered thin rods with high contrast dielectric properties. We show that the material parameters can be chosen in such a way that transverse magnetic modes with given frequencies can not propagate in the crystal. At the same time, for any frequency belonging to a predefined range there exists a transverse electric mode that can propagate in the medium. These results are related to the spectral properties of a weighted Laplacian and of an elliptic operator of divergence type both acting in $L^2(\mathbb{R}^2)$. The proofs rely on perturbation theory of linear operators, Floquet-Bloch analysis, and properties of Schroedinger operators with point interactions.
由细棒构成的光子晶体的光谱分析
在本文中,我们讨论了如何设计在有限个给定频率周围具有光子带隙的光子晶体的问题。在这种材料中,这些频率的电磁波不能传播;这使得它们对于大量应用程序都很有趣。我们的重点是由具有高对比度介电性能的周期性有序细棒制成的晶体。我们证明了材料参数的选择可以使具有给定频率的横向磁模不能在晶体中传播。同时,对于属于预定范围的任何频率,都存在可以在介质中传播的横向电模。这些结果与作用于$L^2(\mathbb{R}^2)$的加权拉普拉斯算子和散度型椭圆算子的谱性质有关。这些证明依赖于线性算子的摄动理论、Floquet-Bloch分析和具有点相互作用的薛定谔算子的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信