Hu Jie, Yaojia Ren, Qianli Huang, Hao He, Luxin Liang, Jingbo Liu, Rui-di Li, Hong Wu
{"title":"Microstructure and Corrosion Behavior of Ti-Nb Coatings on NiTi Substrate Fabricated by Laser Cladding","authors":"Hu Jie, Yaojia Ren, Qianli Huang, Hao He, Luxin Liang, Jingbo Liu, Rui-di Li, Hong Wu","doi":"10.3390/COATINGS11050597","DOIUrl":null,"url":null,"abstract":"Ti-23Nb (at.%) coatings on an NiTi alloy with metallurgical bonding were prepared by laser cladding (LC) technology using Ti-Nb mixture powders. The effects of laser processing parameters on the microstructure and mechanical properties of the coatings were systematically investigated and the corrosion resistance of the coatings was assessed. The coatings were composed of TiNb, (Ti, Nb)2Ni, and β-Nb phases. The coatings increased the hardness of the NiTi alloy by a combined strengthening effect of the eutectics and fine microstructure. The corrosion resistance of the coated part was improved. The coatings with great corrosion resistance could keep the coated parts inert in an aggressive environment, and effectively restrain the release of toxic Ni ions, which means that the Ti-Nb alloy coatings are likely to be used as a biomaterial for medical applications.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11050597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Ti-23Nb (at.%) coatings on an NiTi alloy with metallurgical bonding were prepared by laser cladding (LC) technology using Ti-Nb mixture powders. The effects of laser processing parameters on the microstructure and mechanical properties of the coatings were systematically investigated and the corrosion resistance of the coatings was assessed. The coatings were composed of TiNb, (Ti, Nb)2Ni, and β-Nb phases. The coatings increased the hardness of the NiTi alloy by a combined strengthening effect of the eutectics and fine microstructure. The corrosion resistance of the coated part was improved. The coatings with great corrosion resistance could keep the coated parts inert in an aggressive environment, and effectively restrain the release of toxic Ni ions, which means that the Ti-Nb alloy coatings are likely to be used as a biomaterial for medical applications.