{"title":"Estimating POT second-order parameter for bias correction","authors":"Nan Zou","doi":"10.1080/10485252.2023.2226237","DOIUrl":null,"url":null,"abstract":"The stable tail dependence function provides a full characterization of the extremal dependence structures. Unfortunately, the estimation of the stable tail dependence function often suffers from significant bias, whose scale relates to the Peaks-Over-Threshold (POT) second-order parameter. For this second-order parameter, this paper introduces a penalized estimator that discourages it from being too close to zero. This paper then establishes this estimator's asymptotic consistency, uses it to correct the bias in the estimation of the stable tail dependence function, and illustrates its desirable empirical properties in the estimation of the extremal dependence structures.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"258 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2226237","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The stable tail dependence function provides a full characterization of the extremal dependence structures. Unfortunately, the estimation of the stable tail dependence function often suffers from significant bias, whose scale relates to the Peaks-Over-Threshold (POT) second-order parameter. For this second-order parameter, this paper introduces a penalized estimator that discourages it from being too close to zero. This paper then establishes this estimator's asymptotic consistency, uses it to correct the bias in the estimation of the stable tail dependence function, and illustrates its desirable empirical properties in the estimation of the extremal dependence structures.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.