Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem

IF 0.5 4区 计算机科学 Q3 Computer Science
Jun Suzuki
{"title":"Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem","authors":"Jun Suzuki","doi":"10.1587/transfun.2023tap0014","DOIUrl":null,"url":null,"abstract":"In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum Cramer-Rao bounds.","PeriodicalId":48822,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1587/transfun.2023tap0014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum Cramer-Rao bounds.
多参数量子态估计问题的Bayesian Nagaoka-Hayashi界
在这项工作中,我们提出了一个贝叶斯版本的Nagaoka-Hayashi界,用于估计量子态的参数族。这个下界是将最近提出的点估计的下界推广到贝叶斯估计。然后,我们证明了所提出的下界可以作为半定规划问题有效地计算。作为下界,我们还从bayes Nagaoka-Hayashi界导出了holevo型界的bayes版本。最后,我们证明了新的下界比贝叶斯量子Cramer-Rao界更严格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences
Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
1.10
自引率
20.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信