A. Hamid, N. T. Mbungu, A. Elnady, R. Bansal, A. Ismail, M. AlShabi
{"title":"A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation","authors":"A. Hamid, N. T. Mbungu, A. Elnady, R. Bansal, A. Ismail, M. AlShabi","doi":"10.1177/0958305X221117617","DOIUrl":null,"url":null,"abstract":"Solar energy is the powerhouse where all potential and classified renewable energies lug their sources. The energy transformation from the Sun to electricity requires an adequate control scheme to maximise the generated power and enhance the system efficiency. Besides, more than half of solar irradiation on conventional Photovoltaic (PV) panels is lost. The PV thermal (PV/T) modules have been introduced to convert the lost irradiation to heat. Thus, a systematic review of system components, development, and strategies for grid-connected solar PVs plants is presented. Two solar PVs, traditional PV and PV/T, are evaluated. Each grid-tied PV component is considered a subsystem to analyse the potential improvement of grid-connected PVs. This is from solar resources to grid-tied PV inverter techniques. An intensive assessment of the system improvements is presented to evaluate PV plants’ benefits, challenges, and potential solutions. The improvement trends for the novel generation of grid-connected PV systems consist of applying innovative approaches. It is also found that intelligent strategies optimally ensure the overall efficiency of grid-tied PVs using real-time control and measurement under innovative applications and technologies. These methods effectively assist in enhancing grid-tied diverse solar power approaches. Therefore, this paper would offer a significant foundation for advanced research into the subject of grid-tied PV and PV/T and their innovation and/or technology development.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"1 1","pages":"2775 - 2814"},"PeriodicalIF":4.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221117617","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 17
Abstract
Solar energy is the powerhouse where all potential and classified renewable energies lug their sources. The energy transformation from the Sun to electricity requires an adequate control scheme to maximise the generated power and enhance the system efficiency. Besides, more than half of solar irradiation on conventional Photovoltaic (PV) panels is lost. The PV thermal (PV/T) modules have been introduced to convert the lost irradiation to heat. Thus, a systematic review of system components, development, and strategies for grid-connected solar PVs plants is presented. Two solar PVs, traditional PV and PV/T, are evaluated. Each grid-tied PV component is considered a subsystem to analyse the potential improvement of grid-connected PVs. This is from solar resources to grid-tied PV inverter techniques. An intensive assessment of the system improvements is presented to evaluate PV plants’ benefits, challenges, and potential solutions. The improvement trends for the novel generation of grid-connected PV systems consist of applying innovative approaches. It is also found that intelligent strategies optimally ensure the overall efficiency of grid-tied PVs using real-time control and measurement under innovative applications and technologies. These methods effectively assist in enhancing grid-tied diverse solar power approaches. Therefore, this paper would offer a significant foundation for advanced research into the subject of grid-tied PV and PV/T and their innovation and/or technology development.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.