Online Multi-player Tracking in Monocular Soccer Videos

Michael Herrmann, Martin Hoernig, Bernd Radig
{"title":"Online Multi-player Tracking in Monocular Soccer Videos","authors":"Michael Herrmann,&nbsp;Martin Hoernig,&nbsp;Bernd Radig","doi":"10.1016/j.aasri.2014.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>The tracking of players in monocular soccer videos is a challenging task because of numerous difficulties that can occur especially in TV broadcasts, such as camera motions, severe occlusion of players, or inhomogeneous lightning conditions. We propose a new robust method for multi-player tracking, which is based on finding local maxima on a confidence map. This map represents an ensemble of visual evidences, such as colors of the team outfits, responses of a HOG human detector, and grass regions in images. This combination of features allows for a robust online tracking procedure that does not require any further information about the camera calibration or other user input. In the evaluation using four representative datasets, our algorithm shows remarkable accuracy and outperforms a state-of-the-art pedestrian tracker.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"8 ","pages":"Pages 30-37"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.08.006","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671614000730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The tracking of players in monocular soccer videos is a challenging task because of numerous difficulties that can occur especially in TV broadcasts, such as camera motions, severe occlusion of players, or inhomogeneous lightning conditions. We propose a new robust method for multi-player tracking, which is based on finding local maxima on a confidence map. This map represents an ensemble of visual evidences, such as colors of the team outfits, responses of a HOG human detector, and grass regions in images. This combination of features allows for a robust online tracking procedure that does not require any further information about the camera calibration or other user input. In the evaluation using four representative datasets, our algorithm shows remarkable accuracy and outperforms a state-of-the-art pedestrian tracker.

在线多球员跟踪在单目足球视频
在单目足球视频中跟踪球员是一项具有挑战性的任务,因为在电视转播中可能出现许多困难,例如摄像机运动,球员严重遮挡或不均匀闪电条件。我们提出了一种新的鲁棒的多球员跟踪方法,该方法基于在置信图上找到局部最大值。这张地图代表了视觉证据的集合,如团队服装的颜色,HOG人类探测器的反应,以及图像中的草地区域。这种功能的组合允许一个强大的在线跟踪程序,不需要任何关于相机校准或其他用户输入的进一步信息。在使用四个代表性数据集的评估中,我们的算法显示出显着的准确性,并且优于最先进的行人跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信