A study on K-paracontact and (k,μ)-paracontact manifold admitting vanishing Cotton tensor and Bach tensor

IF 0.5 Q3 MATHEMATICS
V. Venkatesha, N. Bhanumathi, C. Shruthi
{"title":"A study on K-paracontact and (k,μ)-paracontact manifold admitting vanishing Cotton tensor and Bach tensor","authors":"V. Venkatesha, N. Bhanumathi, C. Shruthi","doi":"10.52846/ami.v49i1.1336","DOIUrl":null,"url":null,"abstract":"\"The object of the present paper is to study K-paracontact manifold admitting parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact manifold. In that we prove for a K-paracontact metric manifold M^{2n+1} has parallel Cotton tensor if and only if M^{2n+1} is an η-Einstein manifold and r=-2n(2n+1). Further we show that if g is an η-Einstein K-paracontact metric and if g is Bach flat then g is an Einstein. Also we study vanishing Cotton tensor on (k,μ)-paracontact manifold for both k>-1 and k<-1. Finally, we prove that if M^{2n+1} is a (k,μ)-paracontact manifold for k ≠ -1 and if M^{2n+1} has vanishing Cotton tensor for μ ≠ k, then M^{2n+1} is an η-Einstein manifold.\"","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"527 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i1.1336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

"The object of the present paper is to study K-paracontact manifold admitting parallel Cotton tensor, vanishing Cotton tensor and to study Bach flatness on K-paracontact manifold. In that we prove for a K-paracontact metric manifold M^{2n+1} has parallel Cotton tensor if and only if M^{2n+1} is an η-Einstein manifold and r=-2n(2n+1). Further we show that if g is an η-Einstein K-paracontact metric and if g is Bach flat then g is an Einstein. Also we study vanishing Cotton tensor on (k,μ)-paracontact manifold for both k>-1 and k<-1. Finally, we prove that if M^{2n+1} is a (k,μ)-paracontact manifold for k ≠ -1 and if M^{2n+1} has vanishing Cotton tensor for μ ≠ k, then M^{2n+1} is an η-Einstein manifold."
含消失Cotton张量和Bach张量的k -副接触流形和(k,μ)-副接触流形的研究
本文研究了含有平行Cotton张量和消失Cotton张量的k -副接触流形,并研究了k -副接触流形上的Bach平坦性。在此我们证明了对于k -副接触度量流形M^{2n+1}具有平行Cotton张量当且仅当M^{2n+1}是η-爱因斯坦流形且r=-2n(2n+1)。我们进一步证明,如果g是η-爱因斯坦k -准接触度规,如果g是巴赫平坦度规,那么g是爱因斯坦。同时研究了k>-1和k<-1时(k,μ)-副接触流形上的消失Cotton张量。最后,我们证明了如果M^{2n+1}是k≠-1时的(k,μ)-副接触流形,如果M^{2n+1}在μ≠k时具有消失的Cotton张量,则M^{2n+1}是η-爱因斯坦流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信