{"title":"Mutual information for low-rank even-order symmetric tensor estimation","authors":"Clément Luneau, Jean Barbier, N. Macris","doi":"10.1093/imaiai/iaaa022","DOIUrl":null,"url":null,"abstract":"We consider a statistical model for finite-rank symmetric tensor factorization and prove a singleletter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new nontrivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"44 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaaa022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 14
Abstract
We consider a statistical model for finite-rank symmetric tensor factorization and prove a singleletter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new nontrivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.