SITEM for the Conformable Space-Time Fractional Coupled KD Equations

H. Yaslan, A. Girgin
{"title":"SITEM for the Conformable Space-Time Fractional Coupled KD Equations","authors":"H. Yaslan, A. Girgin","doi":"10.30931/JETAS.452732","DOIUrl":null,"url":null,"abstract":"In the present paper, new analytical solutions for the space-time fractional coupled Konopelchenko-Dubrovsky (KD) equations are obtained by using the simplified $\\tan(\\frac{\\phi (\\xi) }{2})$-expansion method (SITEM). Here, fractional derivatives are described in conformable sense. The obtained traveling wave solutions are expressed by the trigonometric, hyperbolic, exponential and rational functions. Simulation of the obtained solutions are given at the end of the paper.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30931/JETAS.452732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the present paper, new analytical solutions for the space-time fractional coupled Konopelchenko-Dubrovsky (KD) equations are obtained by using the simplified $\tan(\frac{\phi (\xi) }{2})$-expansion method (SITEM). Here, fractional derivatives are described in conformable sense. The obtained traveling wave solutions are expressed by the trigonometric, hyperbolic, exponential and rational functions. Simulation of the obtained solutions are given at the end of the paper.
符合时空-分数阶耦合KD方程的SITEM
本文采用简化$\tan(\frac{\phi (\xi) }{2})$ -展开法(SITEM),得到了时空分数阶耦合的Konopelchenko-Dubrovsky (KD)方程的新的解析解。这里,分数阶导数的描述是符合逻辑的。得到的行波解分别用三角函数、双曲函数、指数函数和有理函数表示。本文最后对所得解进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信