{"title":"Overview of Machine Learning Methods for Genome-Wide Association Analysis","authors":"Minzhu Xie, Fang Liu","doi":"10.1145/3469678.3469682","DOIUrl":null,"url":null,"abstract":"Genome-wide association studies (GWAS) is an effective way to reveal the pathogenic genes of complex diseases by analyzing the genotype information and related disease phenotype information on the SNP loci of the whole genome of a large number of living organisms. Machine learning (ML) is a method that allows computers to simulate human cognitive processes to solve problems. The advantage of using machine learning methods to carry out genome-wide association analysis research is that it does not require false anchor points or gene-gene interaction models in advance Instead of exhaustive search, computer algorithms that simulate human cognitive processes can learn from a large amount of data to discover the ability of nonlinear high-dimensional gene-gene interactions. In recent years, a large number of machine learning methods have been used in the study of genome-wide association analysis. This article will briefly introduct these methods.","PeriodicalId":22513,"journal":{"name":"The Fifth International Conference on Biological Information and Biomedical Engineering","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fifth International Conference on Biological Information and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469678.3469682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Genome-wide association studies (GWAS) is an effective way to reveal the pathogenic genes of complex diseases by analyzing the genotype information and related disease phenotype information on the SNP loci of the whole genome of a large number of living organisms. Machine learning (ML) is a method that allows computers to simulate human cognitive processes to solve problems. The advantage of using machine learning methods to carry out genome-wide association analysis research is that it does not require false anchor points or gene-gene interaction models in advance Instead of exhaustive search, computer algorithms that simulate human cognitive processes can learn from a large amount of data to discover the ability of nonlinear high-dimensional gene-gene interactions. In recent years, a large number of machine learning methods have been used in the study of genome-wide association analysis. This article will briefly introduct these methods.
全基因组关联研究(genome -wide association studies, GWAS)是通过分析大量生物体全基因组SNP位点上的基因型信息和相关疾病表型信息,揭示复杂疾病致病基因的有效途径。机器学习(ML)是一种允许计算机模拟人类认知过程来解决问题的方法。利用机器学习方法开展全基因组关联分析研究的优势在于,它不需要事先建立假锚点或基因-基因相互作用模型,而是通过模拟人类认知过程的计算机算法,从大量数据中学习,发现非线性高维基因-基因相互作用的能力。近年来,大量的机器学习方法被用于全基因组关联分析的研究。本文将简要介绍这些方法。