Efficient Breast Cancer Classification Using Histopathological Images and a Simple VGG

Marcelo Luis Rodrigues Filho, O. Cortes
{"title":"Efficient Breast Cancer Classification Using Histopathological Images and a Simple VGG","authors":"Marcelo Luis Rodrigues Filho, O. Cortes","doi":"10.5753/bresci.2021.15783","DOIUrl":null,"url":null,"abstract":"Breast cancer is the second most deadly disease worldwide. This severe condition led 627,000 people to die in 2018. Thus, early detection is critical for improving the patients' lifetime or even cure them. In this context, we can appeal to Medicine 4.0 that exploits the machine learning capabilities to obtain a faster and more efficient diagnosis. Therefore, this work aims to apply a simpler convolutional neural network, called VGG-7, for classifying breast cancer in histopathological images. Results have shown that VGG-7 overcomes the performance of VGG-16 and VGG-19, showing an accuracy of 98%, a precision of 99%, a recall of 98%, and an F1 score of 98%.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bresci.2021.15783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Breast cancer is the second most deadly disease worldwide. This severe condition led 627,000 people to die in 2018. Thus, early detection is critical for improving the patients' lifetime or even cure them. In this context, we can appeal to Medicine 4.0 that exploits the machine learning capabilities to obtain a faster and more efficient diagnosis. Therefore, this work aims to apply a simpler convolutional neural network, called VGG-7, for classifying breast cancer in histopathological images. Results have shown that VGG-7 overcomes the performance of VGG-16 and VGG-19, showing an accuracy of 98%, a precision of 99%, a recall of 98%, and an F1 score of 98%.
利用组织病理图像和简单的VGG进行乳腺癌的有效分类
乳腺癌是全球第二大致命疾病。2018年,这种严重的疾病导致62.7万人死亡。因此,早期发现对于改善患者的生命甚至治愈至关重要。在这种情况下,我们可以求助于医学4.0,它利用机器学习能力来获得更快、更有效的诊断。因此,这项工作旨在应用一种更简单的卷积神经网络,称为VGG-7,用于在组织病理图像中对乳腺癌进行分类。结果表明,VGG-7克服了VGG-16和VGG-19的性能,准确率为98%,精密度为99%,召回率为98%,F1分数为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信