Deformation Effect on Proton Bubble Structure in N = 28 Isotones

Pankaj Kumar, V. Thakur, S. Thakur, Raj Kumar, S. K. Dhiman
{"title":"Deformation Effect on Proton Bubble Structure in N = 28 Isotones","authors":"Pankaj Kumar, V. Thakur, S. Thakur, Raj Kumar, S. K. Dhiman","doi":"10.15415/jnp.2022.92025","DOIUrl":null,"url":null,"abstract":"Purpose: To study the effect of nuclear deformation on proton bubble structure of N = 28 isotones and and compare it with the spherical limits. The reduction of depletion fraction due to deformation can be explained by studying the relative differences in the central densities.Methods: In this work, we have employed relativistic Hartree-Bogoliubov (RHB) model withdensity-dependent meson-exchange (DD-ME2) interaction and separable pairing interaction. We have performed axially constrained calculations to investigate the deformed proton bubble structure in 40Mg, 42Si, 44S, and 46Ar, isotones of N = 28 shell closure.Results: We have observed that the nuclear deformation play againsts the formation of bubble structure. In the spherical limits, the isotones of N = 28 shell closure have pronounced bubble structure with large value of depletion fraction. But, the increase in deformation leads to the disappearance of bubble structure. The internal densities in deformed nuclei are found to increase with deformation which can be related to the decrease in depletion fraction.Conclusion: By using RHB model, we have investigated the ground state and proton bubble structure of N = 28 isotones. In 44S, and 46Ar, the 2s1/21d3/2 states get inverted due to the weakning of spin-orbit strength. Due to strong dynamical correlations, arising from deformation, the central depletion of proton density is greatly affected in these isotones. The decrease in depletion fraction can be related to increase in the internal density due to deformation","PeriodicalId":16534,"journal":{"name":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Physics, Material Sciences, Radiation and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15415/jnp.2022.92025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To study the effect of nuclear deformation on proton bubble structure of N = 28 isotones and and compare it with the spherical limits. The reduction of depletion fraction due to deformation can be explained by studying the relative differences in the central densities.Methods: In this work, we have employed relativistic Hartree-Bogoliubov (RHB) model withdensity-dependent meson-exchange (DD-ME2) interaction and separable pairing interaction. We have performed axially constrained calculations to investigate the deformed proton bubble structure in 40Mg, 42Si, 44S, and 46Ar, isotones of N = 28 shell closure.Results: We have observed that the nuclear deformation play againsts the formation of bubble structure. In the spherical limits, the isotones of N = 28 shell closure have pronounced bubble structure with large value of depletion fraction. But, the increase in deformation leads to the disappearance of bubble structure. The internal densities in deformed nuclei are found to increase with deformation which can be related to the decrease in depletion fraction.Conclusion: By using RHB model, we have investigated the ground state and proton bubble structure of N = 28 isotones. In 44S, and 46Ar, the 2s1/21d3/2 states get inverted due to the weakning of spin-orbit strength. Due to strong dynamical correlations, arising from deformation, the central depletion of proton density is greatly affected in these isotones. The decrease in depletion fraction can be related to increase in the internal density due to deformation
形变对N = 28等音中质子泡结构的影响
目的:研究核变形对N = 28等音质子气泡结构的影响,并与球面极限进行比较。变形引起的损耗率降低可以通过研究中心密度的相对差异来解释。方法:本文采用具有密度依赖介子交换(DD-ME2)相互作用和可分离配对相互作用的相对论Hartree-Bogoliubov (RHB)模型。我们进行了轴向约束计算,研究了40Mg, 42Si, 44S和46Ar中N = 28壳闭合的变形质子泡结构。结果:观察到核变形对气泡结构的形成起抑制作用。在球形极限下,N = 28壳包体的等音图具有明显的气泡结构,耗尽分数值较大。但是,变形的增加导致气泡结构的消失。变形核的内部密度随变形的增加而增加,这可能与损耗分数的降低有关。结论:利用RHB模型,我们研究了N = 28等音的基态和质子泡结构。在44S和46Ar中,由于自旋轨道强度的减弱,2s1/21d3/2态发生了反转。由于形变引起的强动力学相关性,质子密度的中心耗竭在这些等音中受到很大影响。损耗分数的降低可能与变形引起的内部密度的增加有关
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信