Keynote addresses: Quantum computing: Revolutionizing computation through quantum mechanics

K. Svore
{"title":"Keynote addresses: Quantum computing: Revolutionizing computation through quantum mechanics","authors":"K. Svore","doi":"10.1109/ICCAD.2017.8203750","DOIUrl":null,"url":null,"abstract":"In 1981, Richard Feynman proposed a device called a “quantum computer” to take advantage of the laws of quantum physics to achieve computational speed-ups over classical methods. Quantum computing promises to revolutionize how and what we compute. Over the course of three decades, quantum algorithms have been developed that offer fast solutions to problems in a variety of fields including number theory, optimization, chemistry, physics, and materials science. Quantum devices have also significantly advanced such that components of a scalable quantum computer have been demonstrated; the promise of implementing quantum algorithms is in our near future. I will attempt to explain some of the mysteries of this disruptive, revolutionary computational paradigm and how it will transform our digital age.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1981, Richard Feynman proposed a device called a “quantum computer” to take advantage of the laws of quantum physics to achieve computational speed-ups over classical methods. Quantum computing promises to revolutionize how and what we compute. Over the course of three decades, quantum algorithms have been developed that offer fast solutions to problems in a variety of fields including number theory, optimization, chemistry, physics, and materials science. Quantum devices have also significantly advanced such that components of a scalable quantum computer have been demonstrated; the promise of implementing quantum algorithms is in our near future. I will attempt to explain some of the mysteries of this disruptive, revolutionary computational paradigm and how it will transform our digital age.
主题演讲:量子计算:通过量子力学革新计算
1981年,理查德·费曼(Richard Feynman)提出了一种名为“量子计算机”的设备,利用量子物理定律来实现比经典方法更快的计算速度。量子计算有望彻底改变我们计算的方式和内容。在过去的三十年中,量子算法已经被开发出来,为包括数论、优化、化学、物理和材料科学在内的各种领域的问题提供了快速解决方案。量子设备也有了显著的进步,可扩展量子计算机的组件已经被证明;实现量子算法的希望就在不久的将来。我将试图解释这种颠覆性的、革命性的计算范式的一些奥秘,以及它将如何改变我们的数字时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信