Depth synthesis and local warps for plausible image-based navigation

G. Chaurasia, Sylvain Duchêne, O. Sorkine-Hornung, G. Drettakis
{"title":"Depth synthesis and local warps for plausible image-based navigation","authors":"G. Chaurasia, Sylvain Duchêne, O. Sorkine-Hornung, G. Drettakis","doi":"10.1145/2487228.2487238","DOIUrl":null,"url":null,"abstract":"Modern camera calibration and multiview stereo techniques enable users to smoothly navigate between different views of a scene captured using standard cameras. The underlying automatic 3D reconstruction methods work well for buildings and regular structures but often fail on vegetation, vehicles, and other complex geometry present in everyday urban scenes. Consequently, missing depth information makes Image-Based Rendering (IBR) for such scenes very challenging. Our goal is to provide plausible free-viewpoint navigation for such datasets. To do this, we introduce a new IBR algorithm that is robust to missing or unreliable geometry, providing plausible novel views even in regions quite far from the input camera positions. We first oversegment the input images, creating superpixels of homogeneous color content which often tends to preserve depth discontinuities. We then introduce a depth synthesis approach for poorly reconstructed regions based on a graph structure on the oversegmentation and appropriate traversal of the graph. The superpixels augmented with synthesized depth allow us to define a local shape-preserving warp which compensates for inaccurate depth. Our rendering algorithm blends the warped images, and generates plausible image-based novel views for our challenging target scenes. Our results demonstrate novel view synthesis in real time for multiple challenging scenes with significant depth complexity, providing a convincing immersive navigation experience.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"299 1","pages":"30:1-30:12"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"336","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487228.2487238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 336

Abstract

Modern camera calibration and multiview stereo techniques enable users to smoothly navigate between different views of a scene captured using standard cameras. The underlying automatic 3D reconstruction methods work well for buildings and regular structures but often fail on vegetation, vehicles, and other complex geometry present in everyday urban scenes. Consequently, missing depth information makes Image-Based Rendering (IBR) for such scenes very challenging. Our goal is to provide plausible free-viewpoint navigation for such datasets. To do this, we introduce a new IBR algorithm that is robust to missing or unreliable geometry, providing plausible novel views even in regions quite far from the input camera positions. We first oversegment the input images, creating superpixels of homogeneous color content which often tends to preserve depth discontinuities. We then introduce a depth synthesis approach for poorly reconstructed regions based on a graph structure on the oversegmentation and appropriate traversal of the graph. The superpixels augmented with synthesized depth allow us to define a local shape-preserving warp which compensates for inaccurate depth. Our rendering algorithm blends the warped images, and generates plausible image-based novel views for our challenging target scenes. Our results demonstrate novel view synthesis in real time for multiple challenging scenes with significant depth complexity, providing a convincing immersive navigation experience.
深度合成和局部扭曲为可信的基于图像的导航
现代相机校准和多视图立体技术使用户能够在使用标准相机拍摄的场景的不同视图之间顺利导航。底层的自动3D重建方法在建筑物和规则结构中工作得很好,但在日常城市场景中存在的植被,车辆和其他复杂几何结构中往往失败。因此,缺少深度信息使得基于图像的渲染(IBR)对于这样的场景非常具有挑战性。我们的目标是为这些数据集提供合理的自由视点导航。为此,我们引入了一种新的IBR算法,该算法对缺失或不可靠的几何图形具有鲁棒性,即使在距离输入摄像机位置相当远的区域也能提供看似合理的新视图。我们首先对输入图像进行过度分割,创建均匀颜色内容的超像素,通常倾向于保留深度不连续。然后,我们介绍了一种基于图结构的深度综合方法,该方法基于图的过度分割和适当的遍历。用合成深度增强的超像素允许我们定义一个局部形状保持翘曲,以补偿不准确的深度。我们的渲染算法混合了扭曲的图像,并为我们具有挑战性的目标场景生成可信的基于图像的新视图。我们的研究结果展示了新颖的实时视图合成,可用于具有显著深度复杂性的多个具有挑战性的场景,提供令人信服的沉浸式导航体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信