A STATISTICAL INFERENCE ANALYSIS ON CRIME RATES IN PENINSULAR MALAYSIA USING GEOGRAPHICAL WEIGHTED REGRESSION

IF 0.4 Q4 MATHEMATICS
Nur Edayu Zaini, Syerrina Zakaria, Nuzlinda ABDUL RAHMAN, Wan Saliha Wan Alwi
{"title":"A STATISTICAL INFERENCE ANALYSIS ON CRIME RATES IN PENINSULAR MALAYSIA USING GEOGRAPHICAL WEIGHTED REGRESSION","authors":"Nur Edayu Zaini, Syerrina Zakaria, Nuzlinda ABDUL RAHMAN, Wan Saliha Wan Alwi","doi":"10.46754/jmsi.2021.12.005","DOIUrl":null,"url":null,"abstract":"Geographical Weighted Regression (GWR) is used to improve decisionmaking in spatial analysis. Instead of the Ordinary Least Square (OLS) regression method that gives a single estimated parameter, the GWR method can provide unique estimated parameters in each location. This study aims to conduct a formal statistical inferential framework on the violent crime rate using the GWR. This analysis discovers the geographical distribution and pattern of criminal cases in Peninsular Malaysia using the average crime rates from 2000-2009, with focus on on violent crime. The comparison of OLS regression, known as Multiple Linear Regression (MLR) with the GWR method, was done to show that GWR was the best model. The GWR output suggests that about 30% of districts showed a significant correlation between violent crime and non-citizen rates. These findings contradict the result from the MLR model, also known global model. The global model could not create any other connection to explain the lack of parameter-location correspondence. Finally, the importance of local relationships in crime studies is necessary to understand the actual crime rate.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":"18 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46754/jmsi.2021.12.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Geographical Weighted Regression (GWR) is used to improve decisionmaking in spatial analysis. Instead of the Ordinary Least Square (OLS) regression method that gives a single estimated parameter, the GWR method can provide unique estimated parameters in each location. This study aims to conduct a formal statistical inferential framework on the violent crime rate using the GWR. This analysis discovers the geographical distribution and pattern of criminal cases in Peninsular Malaysia using the average crime rates from 2000-2009, with focus on on violent crime. The comparison of OLS regression, known as Multiple Linear Regression (MLR) with the GWR method, was done to show that GWR was the best model. The GWR output suggests that about 30% of districts showed a significant correlation between violent crime and non-citizen rates. These findings contradict the result from the MLR model, also known global model. The global model could not create any other connection to explain the lack of parameter-location correspondence. Finally, the importance of local relationships in crime studies is necessary to understand the actual crime rate.
利用地理加权回归对马来西亚半岛犯罪率的统计推断分析
利用地理加权回归(GWR)来改进空间分析中的决策。GWR方法可以在每个位置提供唯一的估计参数,而不是给出单个估计参数的普通最小二乘(OLS)回归方法。本研究旨在使用GWR对暴力犯罪率进行正式的统计推理框架。本分析发现马来西亚半岛刑事案件的地理分布和模式,使用2000-2009年的平均犯罪率,重点是暴力犯罪。将OLS回归,即多元线性回归(MLR)与GWR方法进行比较,结果表明GWR是最佳模型。GWR结果表明,大约30%的地区显示出暴力犯罪与非公民犯罪率之间的显著相关性。这些发现与MLR模型(也称为全球模型)的结果相矛盾。全局模型不能建立任何其他联系来解释缺乏参数-位置对应关系。最后,地方关系在犯罪研究中的重要性对于理解实际犯罪率是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信