Fudong Nian, Jie Sun, Dashan Jiang, Jingjing Zhang, Teng Li, W. Lu
{"title":"Predicting dose-volume histogram of organ-at-risk using spatial geometric-encoding network for esophageal treatment planning","authors":"Fudong Nian, Jie Sun, Dashan Jiang, Jingjing Zhang, Teng Li, W. Lu","doi":"10.3233/ais-210084","DOIUrl":null,"url":null,"abstract":"Dose-volume histogram (DVH) is an important tool to evaluate the radiation treatment plan quality, which could be predicted based on the distance-volume spatial relationship between planning target volumes (PTV) and organs-at-risks (OARs). However, the prediction accuracy is still limited due to the complicated calculation process and the omission of detailed spatial geometric features. In this paper, we propose a spatial geometric-encoding network (SGEN) to incorporate 3D spatial information with an efficient 2D convolutional neural networks (CNN) for accurate prediction of DVH for esophageal radiation treatments. 3D computed tomography (CT) scans, 3D PTV scans and 3D distance images are used as the multi-view input of the proposed model. The dilation convolution based Multi-scale concurrent Spatial and Channel Squeeze & Excitation (msc-SE) structure in the proposed model not only can maintain comprehensive spatial information with less computation cost, but also can extract the features of organs at different scales effectively. Five-fold cross-validation on 200 intensity-modulated radiation therapy (IMRT) esophageal radiation treatment plans were used in this paper. The mean absolute error (MAE) of DVH focusing on the left lung can achieve 2.73 ± 2.36, while the MAE was 7.73 ± 3.81 using traditional machine learning prediction model. In addition, extensive ablation studies have been conducted and the quantitative results demonstrate the effectiveness of different components in the proposed method.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"14 1","pages":"25-37"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-210084","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Dose-volume histogram (DVH) is an important tool to evaluate the radiation treatment plan quality, which could be predicted based on the distance-volume spatial relationship between planning target volumes (PTV) and organs-at-risks (OARs). However, the prediction accuracy is still limited due to the complicated calculation process and the omission of detailed spatial geometric features. In this paper, we propose a spatial geometric-encoding network (SGEN) to incorporate 3D spatial information with an efficient 2D convolutional neural networks (CNN) for accurate prediction of DVH for esophageal radiation treatments. 3D computed tomography (CT) scans, 3D PTV scans and 3D distance images are used as the multi-view input of the proposed model. The dilation convolution based Multi-scale concurrent Spatial and Channel Squeeze & Excitation (msc-SE) structure in the proposed model not only can maintain comprehensive spatial information with less computation cost, but also can extract the features of organs at different scales effectively. Five-fold cross-validation on 200 intensity-modulated radiation therapy (IMRT) esophageal radiation treatment plans were used in this paper. The mean absolute error (MAE) of DVH focusing on the left lung can achieve 2.73 ± 2.36, while the MAE was 7.73 ± 3.81 using traditional machine learning prediction model. In addition, extensive ablation studies have been conducted and the quantitative results demonstrate the effectiveness of different components in the proposed method.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.