Hardness of approximate nearest neighbor search

A. Rubinstein
{"title":"Hardness of approximate nearest neighbor search","authors":"A. Rubinstein","doi":"10.1145/3188745.3188916","DOIUrl":null,"url":null,"abstract":"We prove conditional near-quadratic running time lower bounds for approximate Bichromatic Closest Pair with Euclidean, Manhattan, Hamming, or edit distance. Specifically, unless the Strong Exponential Time Hypothesis (SETH) is false, for every δ>0 there exists a constant ε>0 such that computing a (1+ε)-approximation to the Bichromatic Closest Pair requires Ω(n2−δ) time. In particular, this implies a near-linear query time for Approximate Nearest Neighbor search with polynomial preprocessing time. Our reduction uses the recently introduced Distributed PCP framework, but obtains improved efficiency using Algebraic Geometry (AG) codes. Efficient PCPs from AG codes have been constructed in other settings before, but our construction is the first to yield new hardness results.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

We prove conditional near-quadratic running time lower bounds for approximate Bichromatic Closest Pair with Euclidean, Manhattan, Hamming, or edit distance. Specifically, unless the Strong Exponential Time Hypothesis (SETH) is false, for every δ>0 there exists a constant ε>0 such that computing a (1+ε)-approximation to the Bichromatic Closest Pair requires Ω(n2−δ) time. In particular, this implies a near-linear query time for Approximate Nearest Neighbor search with polynomial preprocessing time. Our reduction uses the recently introduced Distributed PCP framework, but obtains improved efficiency using Algebraic Geometry (AG) codes. Efficient PCPs from AG codes have been constructed in other settings before, but our construction is the first to yield new hardness results.
近似最近邻搜索的硬度
我们证明了具有欧几里得、曼哈顿、汉明或编辑距离的近似双色最接近对的条件近二次运行时间下界。特别地,除非强指数时间假设(SETH)是假的,对于每一个δ>0存在一个ε>0的常数,使得计算双色最接近对的(1+ε)-近似需要Ω(n2−δ)时间。特别是,这意味着近似最近邻搜索的近似线性查询时间与多项式预处理时间。我们的约简使用了最近引入的分布式PCP框架,但使用代数几何(AG)代码获得了更高的效率。以前已经在其他设置中构建了AG规范的高效pcp,但我们的构建是第一个产生新的硬度结果的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信