Development and Analysis of Pulse Width Modulation Techniques for Induction Motor Control

S. Katyara, Ashfaque Hashmani, B. Chowdhry
{"title":"Development and Analysis of Pulse Width Modulation Techniques for Induction Motor Control","authors":"S. Katyara, Ashfaque Hashmani, B. Chowdhry","doi":"10.22581/muet1982.2001.09","DOIUrl":null,"url":null,"abstract":"SVPWM (Space Vector Pulse Width Modulation) technique is type of traditional PWM method that efficiently utilizes its dc link voltage and generates high voltage pulses with low harmonic content and high modulation index. VSI (Voltage Source Inverter) with SVPWM generates adjustable voltage and frequency signals for VSDs (Variable Speed Drives). This research work presents the simplified SVPWM technique for controlling the speed and torque of induction motor. The performance of developed SVPWM technique is analyzed in terms of its switching losses and harmonic content and compared with SPWM (Sinusoidal Pulse Width Modulation). Mathematical modeling for induction motor control through two-level VSI with SVPWM and SPWM is presented. The voltage and current TDHs (Total Harmonic Distortions) of the drive with SVPWM technique are 73.23 and 63.3% respectively as compared to 101.99 and 77.89% with SPWM technique. Similarly, the switching losses with SVPWM technique are 178.79 mW and that of with SPWM are 269.45 mW. Simulink modeling and laboratory setup are developed to testify the efficacy of SVPWM and SPWM techniques. The modulation factor of SVPWM technique is 0.907 which is higher as compared to SPWM technique with 0.785 modulation factor.","PeriodicalId":11058,"journal":{"name":"Day 2 Tue, January 14, 2020","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, January 14, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2001.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

SVPWM (Space Vector Pulse Width Modulation) technique is type of traditional PWM method that efficiently utilizes its dc link voltage and generates high voltage pulses with low harmonic content and high modulation index. VSI (Voltage Source Inverter) with SVPWM generates adjustable voltage and frequency signals for VSDs (Variable Speed Drives). This research work presents the simplified SVPWM technique for controlling the speed and torque of induction motor. The performance of developed SVPWM technique is analyzed in terms of its switching losses and harmonic content and compared with SPWM (Sinusoidal Pulse Width Modulation). Mathematical modeling for induction motor control through two-level VSI with SVPWM and SPWM is presented. The voltage and current TDHs (Total Harmonic Distortions) of the drive with SVPWM technique are 73.23 and 63.3% respectively as compared to 101.99 and 77.89% with SPWM technique. Similarly, the switching losses with SVPWM technique are 178.79 mW and that of with SPWM are 269.45 mW. Simulink modeling and laboratory setup are developed to testify the efficacy of SVPWM and SPWM techniques. The modulation factor of SVPWM technique is 0.907 which is higher as compared to SPWM technique with 0.785 modulation factor.
感应电机控制脉宽调制技术的发展与分析
空间矢量脉宽调制(SVPWM)技术是一种有效利用直流链路电压产生谐波含量低、调制指数高的高压脉冲的传统PWM方法。VSI(电压源逆变器)与SVPWM产生可调电压和频率信号的vsd(变速驱动器)。本文提出了一种简化的SVPWM技术来控制异步电动机的转速和转矩。从开关损耗和谐波含量两方面分析了所开发的SVPWM技术的性能,并与SPWM(正弦脉宽调制)进行了比较。提出了基于SVPWM和SPWM的两级VSI异步电机控制的数学模型。SVPWM技术驱动的电压和电流总谐波失真(TDHs)分别为73.23和63.3%,而SPWM技术驱动的TDHs为101.99和77.89%。同样,SVPWM技术的开关损耗为178.79 mW, SPWM技术的开关损耗为269.45 mW。通过Simulink建模和实验室建立验证了SVPWM和SPWM技术的有效性。SVPWM技术的调制因子为0.907,比调制因子为0.785的SPWM技术高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信