BFBox: Searching Face-Appropriate Backbone and Feature Pyramid Network for Face Detector

Yang Liu, Xu Tang
{"title":"BFBox: Searching Face-Appropriate Backbone and Feature Pyramid Network for Face Detector","authors":"Yang Liu, Xu Tang","doi":"10.1109/cvpr42600.2020.01358","DOIUrl":null,"url":null,"abstract":"Popular backbones designed on image classification have demonstrated their considerable compatibility on the task of general object detection. However, the same phenomenon does not appear on the face detection. This is largely due to the average scale of ground-truth in the WiderFace dataset is far smaller than that of generic objects in theCOCO one. To resolve this, the success of Neural Archi-tecture Search (NAS) inspires us to search face-appropriate backbone and featrue pyramid network (FPN) architecture.Firstly, we design the search space for backbone and FPN by comparing performance of feature maps with different backbones and excellent FPN architectures on the face detection. Second, we propose a FPN-attention module to joint search the architecture of backbone and FPN. Finally,we conduct comprehensive experiments on popular bench-marks, including Wider Face, FDDB, AFW and PASCALFace, display the superiority of our proposed method.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"26 1","pages":"13565-13574"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.01358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Popular backbones designed on image classification have demonstrated their considerable compatibility on the task of general object detection. However, the same phenomenon does not appear on the face detection. This is largely due to the average scale of ground-truth in the WiderFace dataset is far smaller than that of generic objects in theCOCO one. To resolve this, the success of Neural Archi-tecture Search (NAS) inspires us to search face-appropriate backbone and featrue pyramid network (FPN) architecture.Firstly, we design the search space for backbone and FPN by comparing performance of feature maps with different backbones and excellent FPN architectures on the face detection. Second, we propose a FPN-attention module to joint search the architecture of backbone and FPN. Finally,we conduct comprehensive experiments on popular bench-marks, including Wider Face, FDDB, AFW and PASCALFace, display the superiority of our proposed method.
BFBox:人脸检测器的人脸匹配骨架和特征金字塔网络搜索
基于图像分类设计的主流主干在一般目标检测任务上具有很强的兼容性。然而,同样的现象不会出现在人脸检测上。这主要是由于WiderFace数据集中的ground-truth的平均尺度远远小于coco数据集中的通用对象。为了解决这个问题,神经结构搜索(NAS)的成功启发了我们去搜索适合人脸的骨干和特征金字塔网络(FPN)结构。首先,通过比较不同主干和优秀FPN结构的特征映射在人脸检测上的性能,设计主干和FPN的搜索空间;其次,我们提出了一个FPN关注模块来联合搜索主干网和FPN的结构。最后,我们在wide Face、FDDB、AFW和PASCALFace等常用基准上进行了综合实验,验证了本文方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信