An improved Sliding Mode Observer for parameter estimation in induction motor drive with optimised gains

Q3 Engineering
Mahesh Pudari, S. Arya, R. Arya
{"title":"An improved Sliding Mode Observer for parameter estimation in induction motor drive with optimised gains","authors":"Mahesh Pudari, S. Arya, R. Arya","doi":"10.1080/1448837X.2023.2174110","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper represents the online parameter identification and continuous updating in the controller of Induction Motor Drives (IMD). The online measure of parameters improves the operation of the speed estimator, particularly nearer to the zero speed, and also computes the adaptive slip angular frequency. The parameter of speed estimation is performed by the improved Optimized Constant Rate Reaching Law (OCRRL)-based sliding mode observer (SMO), and electrical parameters of stator resistance, mutual inductance, and rotor time constant estimation is performed by Improved Adaptive SMO (IASMO). To enhance the monitoring reliability driven by parameter mismatches, an Online Parameter Estimation Control (OPEC) is presented. Lyapunov’s stability function is used to develop OPEC’s motor parameter adaptive rule. The conventional SMO suffers from the problem of higher chattering phenomena at the sliding surface, especially at very low and zero speeds. An improved OCRRL-based SMO dissolves this issue. Further, to enhance the performance by eliminating the time required for manual tuning of gains of observers in IASMO and PI controllers in Indirect Field Oriented Control (IFOC) are obtained by the Grey Wolf Optimization (GWO) technique. The effectiveness and performance of the proposed observers are tested and verified for possible operating conditions.","PeriodicalId":34935,"journal":{"name":"Australian Journal of Electrical and Electronics Engineering","volume":"50 1","pages":"235 - 250"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1448837X.2023.2174110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This paper represents the online parameter identification and continuous updating in the controller of Induction Motor Drives (IMD). The online measure of parameters improves the operation of the speed estimator, particularly nearer to the zero speed, and also computes the adaptive slip angular frequency. The parameter of speed estimation is performed by the improved Optimized Constant Rate Reaching Law (OCRRL)-based sliding mode observer (SMO), and electrical parameters of stator resistance, mutual inductance, and rotor time constant estimation is performed by Improved Adaptive SMO (IASMO). To enhance the monitoring reliability driven by parameter mismatches, an Online Parameter Estimation Control (OPEC) is presented. Lyapunov’s stability function is used to develop OPEC’s motor parameter adaptive rule. The conventional SMO suffers from the problem of higher chattering phenomena at the sliding surface, especially at very low and zero speeds. An improved OCRRL-based SMO dissolves this issue. Further, to enhance the performance by eliminating the time required for manual tuning of gains of observers in IASMO and PI controllers in Indirect Field Oriented Control (IFOC) are obtained by the Grey Wolf Optimization (GWO) technique. The effectiveness and performance of the proposed observers are tested and verified for possible operating conditions.
一种改进的滑模观测器,用于感应电机驱动参数估计的优化增益
本文研究了异步电机驱动(IMD)控制器参数的在线辨识和连续更新。参数的在线测量改善了速度估计器的运行,特别是更接近零速度,并计算了自适应滑移角频率。速度参数估计采用改进的基于优化恒速率逼近律(OCRRL)的滑模观测器(SMO)进行,定子电阻、互感和转子时间常数的电参数估计采用改进的自适应SMO (IASMO)进行。为了提高由参数不匹配驱动的监测可靠性,提出了一种在线参数估计控制方法。利用李雅普诺夫稳定性函数建立了欧佩克电机参数自适应规则。传统的SMO在滑动面上存在较高的抖振现象,特别是在非常低和零速度下。一个改进的基于ocrl的SMO解决了这个问题。此外,为了消除间接场定向控制(IFOC)中isasmo观测器增益的手动调整所需的时间,采用灰狼优化(GWO)技术获得了间接场定向控制(IFOC)中PI控制器的增益,从而提高了性能。在可能的操作条件下,对所建议的观察员的有效性和性能进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Australian Journal of Electrical and Electronics Engineering
Australian Journal of Electrical and Electronics Engineering Engineering-Electrical and Electronic Engineering
CiteScore
2.30
自引率
0.00%
发文量
46
期刊介绍: Engineers Australia journal and conference papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信